Blue hydrogen – Semi-solid state batteries: a better alternative to solid state ones? 20-11-2023

Blue hydrogen

Petrochemicals textile – Electric brakes, devoid of a hydraulic system, herald a groundbreaking revolution 


Blue hydrogen

Crude Oil Prices Trend 

Crude Oil Prices Trend by Polyestertime

Crude Oil Prices Trend by Polyestertime

Circular Polymers by Ascend and ReDefyne experts highlight expanded options for post-consumer recycled nylons, PET and PP

CP’s business director will share learnings at Compounding World Expo

Recycling post-consumer nylons for high-performance applications is possible – and achievable with high product consistency and low energy consumption. Circular Polymers by Ascend leader Maria Field has been tapped by Compounding World Expo to show attendees the possibilities.  Blue hydrogen

In her talk titled “Nylon Recycling: A Circularity Story,” Field will discuss how mechanical recycling can convert end-of-life carpet back into usable nylon 6,6 or nylon 6, without the use of added water. With Circular Polymers’ recycling technology, these materials can find new life as fibers or pellets used in new applications, including high-performance engineered materials. The company also recycles polypropylene, PET and calcium carbonate from carpet.

“Recycling carpet has never been more efficient or effective,” Field says. “At Circular Polymers, our proprietary process allows us to convert landfill-bound carpet into feedstocks for materials that go into finished goods such as automobiles, electric vehicles, furniture, household appliances and more.”  Blue hydrogen

Field’s presentation is scheduled for 2:40 p.m. Nov. 15 at Compounding World Expo Theater Two in Cleveland, Ohio. The show runs Nov. 15-16, and Circular Polymers will co-exhibit with its parent company, Ascend Performance Materials, in Stand A-1208.

Ascend experts will be on-hand to discuss ReDefyne™, a line of post-consumer and post-industrial recycled compounds designed for demanding applications, such as under the hood of autos and in electric vehicles.  Blue hydrogen

Circular Polymers by Ascend, a leading recycler of post-consumer carpet, provides the feedstocks for ReDefyne production. It also offers recycled fibers and pellets as feedstocks for compounds and injection molding applications. Earlier this year the company launched Cerene™, a line of recycled polymers and materials.

Ascend Performance Materials, a fully integrated producer of durable high-performance materials, is known for its innovations in nylon 6,6. Cerene continues that legacy with offerings in nylon 6,6 while also bringing to market recycled polymers such as nylon 6, PET and PP.

“Customers around the globe are seeking consistent and reliable post-consumer recycled materials,” said Maria Field, business director of Circular Polymers by Ascend. “All our feedstocks and Cerene materials come from a mechanical recycling process that minimizes carbon footprint and environmental impact.”  Blue hydrogen

Circular Polymers by Ascend has redirected 85 million pounds of carpet from landfills into new goods in its California facility since 2018. Industry recognition includes the Plastic Industry Sustainability Innovation award, Innovation Showcase award from the Association of Plastic Recyclers, Arrow Award from the California Product Stewardship Council and Processor of the Year award from the Carpet America Recovery Effort.

Ascend has published its 2030 Vision, a set of nine sustainability targets including a target to reduce waste by 40% and reduce its scope 1 emissions by 90%. The company recently announced two new efforts to reduce the carbon footprint of its products.


Blue hydrogen

World’s largest plastic sorting facility promises a trashy revolution

A new state-of-the-art plastic sorting facility, the largest of its kind in the world, has been launched in Sweden. It’s big enough to receive almost all plastic waste from Swedish households. The technology could have implications for Australian governments and companies, who have been increasingly embracing the push to go green.

This factory is all about plastic.  Blue hydrogen

Chocolate wrappers, plastic bags, yoghurt containers and white polystyrene boxes are making their way across a 60,000 square metre complex – to be broken down, separated by size, and sorted in a fully automated process.

Mattias Philipsson is the CEO of Sweden Plastic Recycling.

“This what the end result looks like. Here we have each plastic type separately sorted. Here we have ketchup bottles. Here we have a creme fraiche packaging. Here we have a lot of candy wrappers. Here we have rigid, different plastics. And everything is sorted separately, so it can be recycled separately.”

The new plant is called Site Zero, built to receive 200,000 tons of plastic household waste a year Blue hydrogen

While there isn’t yet a market for each type of plastic they sort, upcoming EU legislation is set to require new plastic packaging to contain at least 35 percent recycled material.

The legislation is part of a worldwide push to tackle what Robert Blasiak from the Stockholm Resilience Centre says is a massive plastics pollution problem.

“To date, about 8 billion metric tons of plastic have been produced globally. It’s basically about one metric ton for every person alive today. In most of the world, there aren’t waste management facilities equipped to deal with that scale of plastic pollution… It’s thought that only about 9 percent of that has been recycled, about 12 percent has been incinerated and about 79 percent has entered the natural environment into the ocean, into landfills, into waterways. It’s still with us.”

There’s been a worldwide push for sustainability and a reduction in greenhouse gas emissions, and some signs at the grassroots level that the green message is getting through.  Blue hydrogen

In Stockholm, a supermarket called ICA is stocking a grey detergent bottle made from Site Zero’s recycled materials.

ICA packaging manager Karin Jawerth.

“This particular product is the flagship of the circularity that we are trying to achieve, where our recycled packaging becomes a new packaging, and it’s only coming from Swedish households.”

Karin Jawerth says the supermarket wants to work with Site Zero to use fewer types of plastic, avoiding dark plastics that machines struggle to sort and avoiding too much labelling that reduces the quality of the final recycled raw material.

“The most important purpose of the packaging is to protect the product. And it doesn’t matter how recyclable the packaging is if it doesn’t protect the product and we generate more food waste… And it’s not only about recyclability when it comes to sustainable packaging. It’s also about how much packaging material you’re using, how well you can empty the products.”  Blue hydrogen


Blue hydrogen

Neste and Mitsui Chemicals receive Japanese Eco mark for bio-based seaweed snack packaging

NesteMitsui Chemicals, and its subsidiary Prime Polymer are packaging dried seaweed slices with bio-based raw materials for the Japanese Consumers Co-operative Union (JCCU) brand CO-OP.

Prime Polymer is processing Neste RE, a polymer feedstock made entirely from bio-based raw materials, into renewable polypropylene under the brand name Prasus. The polypropylene will then be converted for JCCU food packaging.

This is expected to provide the same quality and performance as its predecessor while cutting down on both fossil-based content and the packaging’s carbon footprint. It uses mass balancing to allocate renewable material to the plastic packaging.

The partners report that the seaweed snack packaging is the first of its kind – i.e., packaging made with renewable plastics in a mass balance approach – to receive the Japanese Eco Mark certification. Blue hydrogen

“Change begins with small things,” Lilyana Budyanto, head of Sustainable Partnerships APAC at Neste’s Renewable Polymers and Chemicals business unit. “In this case, it’s slices of dried seaweed.

“However, the impact of renewable plastics packaging isn’t small at all. It’s a crucial contributor to the sustainability transformation of the plastics industry and reducing emissions along the value chain. We are looking forward to the cooperation with Mitsui Chemicals, Prime Polymer and JCCU evolving.”


Neste and Mitsui Chemicals receive Japanese Eco mark for bio-based seaweed snack packaging

Semi-solid state batteries: a better alternative to solid state ones?

They can match the performance and safety of solid state batteries, but with a simpler and faster production process.  Blue hydrogen

Thanks to a gel-like electrolyte, they are ready to hit the market sooner.

Solid state batteries are often seen as the ultimate solution for electric cars. They promise to deliver many benefits that make them highly desirable.

Many companies are working harto increase the energy density, but with an advantage: the gel allows a faster movement of ions between the electrodes, compared to a solid electrolyte.  

A smart way to overcome technod to bring them to the market, but some researchers are raising an interesting question: what if the best batteries for the future were not solid, but semi-solid?

A semi-solid state battery has an electrolyte that is not liquid, but gel-like (and present in very small amounts).  Blue hydrogen

Like solid state batteries, it aims logical challenges A solid electrolyte, made of ceramic or polymer, is much more difficult to manufacture.

That’s why some startups that are developing solid state batteries are considering adding some gel (or liquid) to their products, to improve their performance.

Some examples are Factorial Energy, StoreDot, Lyten and QuantumScape.

Semi-solid state batteries can offer similar performance to solid state batteries, but with a lower cost and complexity.  Blue hydrogen

Some analysts even wonder if solid state batteries are worth pursuing, given the challenges they face and the advantages of semi-solid state batteries.

Semi-solid state batteries: a better alternative to solid state ones?


UFlex’s innovative, sustainable product lines in Q2 FY24 

UFlex Limited launched several innovative and sustainable products across business verticals in Q2 FY24. The company also won several awards in the quarter ended September 30, 2023.

Packaging Films Business

F-PTX high-barrier thermal stable alox film (offline coating): F-PTX is a high barrier thermal stable transparent Alox BOPET film. The film has a protective printable layer atop a high-barrier vacuum  deposit on one side and the other side is primer-coated or untreated. This film has excellent moisture and oxygen barrier properties and is environmentally friendly. It has an increased yield compared to PVDC-coated films and is a good replacement for PVDC/EVOH (PE) coated films. This film is suitable for high-barrier applications such as dried meat snacks, confectionaries, microwavable foods, etc. The film is suitable for hot fill, sterilization, pasteurization, and retort applications  (125⁰C/45min), which makes it eye-catching and suitable for industrial packaging.

F-UMF melamine-free BOPET Film (Inline Coating): F-UMF is a transparent BOPET film. One side of the film is a UMF chemical-coated surface, with the other side being untreated or corona-treated. It possesses high clarity, excellent machinability and handling properties, and excellent metal bond strength. Blue hydrogen

On one hand, the coated surface provides excellent adhesion with various types of inks and adhesives, and on the other, the corona treatment improves bonding. The film is suitable for printing, lamination, metallization and hot fill, pasteurization, sterilization, and retort application.

CWR White opaque retort-grade CPP film (Functional Raw Material)

CWR white opaque retort-grade CPP film (Functional raw material): C-CWR is a co-extruded white opaque film that is treated for aseptic/retort packaging on one side. It provides excellent sterilization performance, lamination adhesive anchorage, and high seal strength. The primary application areas of this film are sterilization and pasteurization, hot filling, and packing ready-to-eat food.  Blue hydrogen

B-TAS Transparent Anti-fog with Low SIT BOPP Film (BOPP, functional raw material co-extruded layer modification): B-TAF is a newly designed anti-fog (both cold and hot) sealable treated layer on one side and an anti-fog with LOW SIT heats sealable layer on the other side. Good anti-fog functionality (both cold and hot), anti-fog side SIT (<85 °C), good seal performance, and good machinability are some of the quality improvement approaches offered by this film. It is primarily used in the packaging of fresh foods and vegetables and also in hot and cold anti-fog applications.


UFlex’s innovative, sustainable product lines in Q2 FY24 

Experts react to Japan and South Korea’s joint hydrogen and ammonia initiative

Today, Japanese and South Korean leaders are expected to announce a joint supply network for hydrogen and ammonia at the Asia Pacific Economic Cooperation (APEC) meeting.  Blue hydrogen

The initial announcement did not restrict the supply chain to renewable energy-based green hydrogen and ammonia, according to the Nikkei report of the development.

Without clear guardrails, experts say this may lead to fossil fuel-based blue hydrogen and ammonia expansion, which would prolong the use of coal and gas and delay the transition to renewable energy in the Asia region. Blue hydrogen and ammonia rely on the use of carbon capture and storage (CCS), which has historically failed to significantly reduce greenhouse gas emissions.

The world’s top LNG importers have been pushing for the expansion of fossil fuel-based blue hydrogen and ammonia domestically and abroad.

Japan’s “Green Transformation” (GX) strategy directs 150 trillion yen ($1 trillion) in public-private investments including nuclear and fossil fuel-based technologies such as LNG, carbon capture storage (CCS), ammonia and hydrogen co-firing at thermal plants as part of its strategy for Asia’s energy transition.  Blue hydrogen

South Korea also aims to expand hydrogen and ammonia including the conversion of 24 coal plants to ammonia co-firing plants by 2030, which experts say will likely prolong the use of coal. While South Korea plans on establishing a clean hydrogen certification system next year, lawmakers are continuing to debate over whether to include fossil fuel-based blue hydrogen in the definition.

Japan’s Mitsubishi Corporation, Korea’s Lotte Chemical, and Germany’s RWE signed an agreement in February to develop an ammonia production and export project in the U.S. that would produce up to 10 million tons of blue ammonia per year.

Japan’s Mitsui & Co. and South Korea’s GS Energy are also planning on producing up to 1 million tons of blue hydrogen per year in the United Arab Emirates with UAE’s oil major ADNOC.  Blue hydrogen


Experts react to Japan and South Korea’s joint hydrogen and ammonia initiative

White hydrogen – Setting Up a Recycled Polyester Manufacturing Plant: Project Report 2023 18-11-2023

Blue hydrogen

Petrochemicals textile – Electric brakes, devoid of a hydraulic system, herald a groundbreaking revolution 20-11-2023

Petrochemicals textile

Petrochemicals textile

  • Polymers : PET – r-PET – Filament grade semidull chips -Filament grade bright chips – Ny6 – Ny66 – PP
  • Feedstocks  PX – PTA – MEG – CPL – Adipic Acid – Benzene – ACN – Ethylene – Phenol – Naphtha
  • Textile : Polyester POY – DTY – FDY – PSF – Recycled Polyester POY – Nylon POY – DTY – FDY Spandex 20-30-40 -Viscose Staple Fiber VSF  Acrylic Staple Fiber 

Petrochemicals textile

Petrochemicals textile

ITEM 13/11/2023 20/11/2023 +/-
Bottle grade PET chips domestic market 6,900 yuan/ton 7,000 yuan/ton +100
Bottle grade PET chips export market 880 $/ton 890 $/ton +10
Filament grade Semidull chips domestic market 6,710 yuan/ton 6,825 yuan/ton +115
Filament grade Bright chips domestic market 6,750 yuan/ton 6,875 yuan/ton +125
Pure Terephthalic Acid PTA domestic market 5,825 yuan/ton 6,080 yuan/ton +255
Pure Terephthalic Acid PTA export market 740 $/ton 750 $/ton +10
Monoethyleneglycol MEG domestic market 4,100 yuan/ton 4,185 yuan/ton +85
Monoethyleneglycol MEG export market 478 $/ton 488 $/ton +10
Paraxylene PX FOB  Taiwan market

Petrochemicals textile

998 $/ton 1,020 $/ton
Paraxylene PX FOB  Korea market 975 $/ton 997 $/ton +22
Paraxylene PX FOB EU market 1,080 $/ton 1,050 $/ton -30
Polyester filament POY 150D/48F domestic market 7,325  yuan/ton 7,430 yuan/ton
Recycled Polyester filament POY  domestic market 7,350 yuan/ton 7,400 yuan/ton +50
Polyester filament DTY 150D/48 F domestic market 8,700 yuan/ton 8,825yuan/ton +125
Polyester filament FDY 68D24F

Petrochemicals textile

8,700 yuan/ton 8,800 yuan/ton +10s0
Polyester filament FDY 150D/96F domestic market 7,950 yuan/ton 8,100 yuan/ton +150
Polyester staple fiber 1.4D 38mm domestic market 7,400 yuan/ton 7,500 yuan/ton +100
Caprolactam CPL domestic market 12,800 yuan/ton 13,000 yuan/ton
Caprolactam CPL overseas  market 1,600 $/ton 1,600 $/ton
Nylon 6 chips overseas  market 1,830 $/ton 1,830 $/ton
Nylon 6 chips conventional spinning domestic  market 13,850 yuan/ton 14,000 yuan/ton +150
Nylon 6 chips  high speed spinning domestic  market

Petrochemicals textile

14,050 yuan/ton 14,250 yuan/ton +200
Nylon 6.6 chips domestic  market 20,000 yuan/ton 20,000 yuan/ton
Nylon6 Filament POY 86D/24F domestic  market 16,150 yuan/ton 16,350 yuan/ton +200
Nylon6 Filament DTY 70D/24F domestic  market 18,300 yuan/ton 18,500 yuan/ton- +200
Nylon6 Filament FDY  70D/24F  17,000 yuan/ton 17,000 yuan/ton
Spandex 20D  domestic  market

Petrochemicals textile

36,200 yuan/ton 36,100 yuan/ton -100
Spandex 30D  domestic  market 34,700 yuan/ton 34,600 yuan/ton -100
Spandex 40D  domestic  market  31,700 yuan/ton 31,600 yuan/ton -100
Adipic Acid domestic market 8,900 yuan/ton 8,850 yuan/ton -50
Benzene domestic market

Petrochemicals textile

7,730 yuan/ton 7,800 yuan/ton +70
Benzene overseas  market 869 $/ton 893 $/ton +24
Ethylene South East market 940 $/ton 940 $/ton
Ethylene NWE market 836 $/ton 779 $/ton -57
Acrylonitrile ACN  domestic market

Petrochemicals textile

10,200 yuan/ton 10,300 yuan/ton +100
Acrylonitrile ACN  overseas market 1,200 $/ton 1,200 $/ton
Acrylic staple fiber ASF  domestic market 14,600 yuan/ton 14,600 yuan/ton
Viscose Staple Fiber VSF  domestic market 13,150 yuan/ton 13,100 yuan/ton -50
PP Powder domestic market

Petrochemicals textile

7,250 yuan/ton 7,350 yuan/ton +100
Naphtha overseas market  630 $/ton 626 $/ton -4
Phenol domestic market 7,857 yuan/ton 8,192 yuan/ton +335

r-PET high end eco-friendly chips =7,900 yuan/ton 7,900 yuan/ton   –


Petrochemicals textile

Electric brakes, devoid of a hydraulic system, herald a groundbreaking revolution

ZF has unveiled a novel electromechanical braking system, marking a departure from traditional hydraulic setups. Engineered in ZF’s research hubs in China, the USA, and Germany, this purely electric braking system forgoes hydraulic fluid, relying on electric motors to generate braking force on each wheel.

Dr. Holger Klein, CEO of ZF Group, emphasizes the significance of this electrically controlled braking system in expanding their portfolio of interconnected chassis systems. Klein underscores its pivotal role in ushering in a new era of vehicle control, particularly in software-defined and electric vehicles.

The absence of a hydraulic system, termed “dry brake-by-wire,” eliminates the need for brake fluid.

In this system, braking pressure is generated not by fluid pressure in a hydraulic system but by electric motors, with brake signals transmitted electrically.

This innovative brake-by-wire system, exemplified by Integrated Brake Control (IBC), offers advantages such as reduced braking distances, enhanced braking energy recovery, and lower maintenance costs compared to traditional systems.

In emergency braking scenarios at 100 km/h, the braking distance can be up to 9 meters shorter than that of traditional systems.

Electric vehicles, specifically, stand to gain up to 17% more range through improved braking energy recovery.

The “dry” nature of this brake-by-wire system minimizes residual friction torques, resulting in virtually zero particulate emissions from brake abrasion.

This lower resistance not only saves energy during driving but also contributes to increased range in electric vehicles.

Beyond the performance benefits, forgoing the hydraulic system significantly reduces assembly and logistics costs in vehicle production.

Users also benefit from lower maintenance requirements, as there’s no need to change brake fluid over the vehicle’s lifespan.

Despite the absence of mechanical connections between the pedal and brake actuators, the braking sensation remains akin to a hydraulic brake.

Ensuring the security of data transmission and processing, as well as a stable energy supply to electric motors, is achieved through redundancy in all connections and systems, mirroring the reliability seen in aviation by-wire systems.

With over 50 years of experience, ZF, a leading global supplier, provides vehicle manufacturers with flexibility in choosing their braking systems—from purely hydraulic to purely electric or a hybrid combination.

ZF’s comprehensive range spans all components, from wheel brakes to parking brakes, covering hardware and software.

Moreover, ZF’s portfolio extends beyond braking systems to include purely electronic systems for steering, shock absorbers, and brakes, facilitating the creation of interconnected chassis systems.

This approach promises improved driving dynamics, greater vehicle control, shorter braking distances, enhanced steering flexibility, increased stability at high speeds, and improved autonomy and efficiency in software-defined vehicles.

Electric brakes, devoid of a hydraulic system, herald a groundbreaking revolution

Wordpress Social Share Plugin powered by Ultimatelysocial