Polyestertime

White hydrogen – Setting Up a Recycled Polyester Manufacturing Plant: Project Report 2023 18-11-2023

White hydrogen

SK Geo Centric Breaks Ground on Ulsan Recycling Facility

The $1.4 billion facility is expected to be capable of processing 320,000 metric tons of waste plastic per year.

SK Geo Centric held a groundbreaking ceremony on Wednesday, Nov. 15, for the Ulsan Advanced Recycling Cluster (ARC), a waste recycling complex.

The site represents a total projected investment of KRW 1.8 trillion ($1.4 billion USD) and will cover 60 acres. The Ulsan ARC is scheduled to be completed by the end of 2025.

SK Geo Centric is partnering with Plastic EnergyPurecycle Technologies and Loop Industries to apply three recycling technologies in one site: pyrolysis,  polypropylene (PP) extraction and depolymerization.  White hydrogen

“The ability to create a closed-loop recycling system for apparel companies using the Infinite Loop technology will play a significant role in our Asian JV with SKGC as we work to reinvent the supply chain for textile manufacturing in Asia,” says Daniel Solomita, Loop Industries CEO.

When the facility is operational, it is expected to have an annual capacity to reprocess 320,000 metric tons (over 700 million lbs) of plastic waste.

Operating at full capacity, this will enable processing 9% of waste plastic incinerated or buried each year in South Korea and 60% of the nation’s annual consumption of PET water bottles and plastic cups.

SK Geo Centric’s Ulsan ARC project is designed to serve as a model for future projects, with discussions already underway for building additional plants in France, Belgium and China.  White hydrogen

The Ulsan site will be able to create raw plastic materials from a wide range of discarded plastics, such as takeout  containers, bottles, automotive parts and certain plastic-based textiles.

It will be able to turn some plastics, such as vinyl and other composite plastics, into chemical materials that can be used as a substitute for crude oil.

More…

White hydrogen

Carbios’ PET Biorecycling Plant, Longlaville, France

Carbios is developing the world’s first PET biorecycling plant in Longlaville, France.

Carbios, a biotech company based in France, is developing a polyethylene terephthalate (PET) biorecycling plant in Longlaville, France. It is expected to be the first of its kind in the world.

The new facility is being developed in a joint venture (JV) with Indorama Ventures, a producer of recycled PET for beverage bottles. The JV is expected to invest €230m ($242.9m) in the facility.  White hydrogen

The construction is scheduled to begin by the end of 2023, with commissioning targeted for 2025. The project is expected to create approximately 150 direct and indirect full-time jobs.

The new facility is part of Indorama’s Vision 2030, which is aimed at achieving a recycling capacity of 50 billion PET bottles a year by 2025 and 100 billion bottles a year by 2030. Indorama plans to expand the technology to other PET plants based on the performance of the new facility.

Carbios’ PET biorecycling plant location

The PET biorecycling plant will be built on a 13.7ha site within Indorama’s PET production site located in Longlaville, Meurthe-et-Moselle, France. The site has space to double its capacity in the future.  White hydrogen

The plant’s location near the borders of Belgium, Germany and Luxembourg provides access to nearby waste supply.

Development details

Carbios and Indorama announced plans to develop the facility in February 2022. The two companies signed a non-binding memorandum of understanding (MoU) in June 2023 for the project.

Indorama will ensure 100% output repolymerisation and both partners will be responsible for securing feedstock supply under the MoU.

Carbios filed for the permitting process of the new plant in December 2022. The environmental operating permit was issued in September 2023, while the building permits were granted in October 2023.

Carbios’ PET biorecycling plant details

Carbios’ PET biorecycling plant will provide an industrial-scale enzymatic recycling solution for PET waste.  White hydrogen

The plant will have a processing capacity of 50,000t of post-consumer PET waste a year, including non-recyclable mechanical waste equivalent to two billion coloured PET bottles or 2.5 billion PET food trays.

The initial supply for the plant will be sourced by a consortium comprising Carbios, Wellman, a subsidiary of Indorama Ventures and Valorplast, as part of a tender issued by CITEO. Valorplast is a recycling services provider, while CITEO is a not-for-profit organisation focused on reducing the environmental impact of packaging.

The consortium will handle 30% of the tonnage of multilayer food trays proposed by CITEO, a portion of which will be supplied to the new plant in 2025.

Carbios’ enzymatic recycling process details  White hydrogen

Carbios’ C-ZYME is a first-of-its-kind enzyme-based biological process that converts PET plastic and textile waste into its core monomers, which are then purified to enable repolymerisation into a PET of similar quality to that of one manufactured from virgin material.

The solvent-free process overcomes the limits of existing thermomechanical recycling processes that can only recycle clear plastic in a closed loop with some loss in quality. The technology enables all types of PET waste to be recycled, allowing for the manufacture of 100% recycled and infinitely recyclable PET products.  White hydrogen

More…

White hydrogen

The Power and Traceable Proof Behind Lenzing’s Fiber Brands

Now more than ever, companies need to know where their fibers come from. Being able to pinpoint a material’s origin not only helps to provide more specific sustainability progress, benchmarking and reporting, but it also enables brands to make supported, substantiated claims about their products’ impact.

However, the apparel and textile industries’ long and complex supply chains make it challenging to have full confidence in tracing a material origin and the authenticity of the claims made about specific products.  White hydrogen

Most companies can only trace back to Tier 2, or their fabric supplier, leaving opportunities for counterfeit risks. In an effort to establish better traceability practices, wood-based fiber manufacturer the Lenzing Group created traceability and transparency systems and solutions to protect its fiber brands, TENCEL™ and LENZING™ ECOVERO™.

The companies that source Lenzing materials know they are getting the verified, sustainable lyocell and modal, compared to generic viscose fi“Respect and protection of trademarks are our core values, and we strongly believe that innovation is the lifeline for ongoing growth and development of the fashion and home textile value chain,” said Harold Weghorst, vice president of global marketing and branding at Lenzing.

“For years, we have been taking proactive steps to enforce the TENCEL™ and LENZING™ ECOVERO™ trademarks to ensure that the rights of our partners and consumers are protected, and that only products made of authentic branded fibers bear the trademarks.”

In 2018, Lenzing launched its Lenzing E-Branding Service for its supply chain partners. In this system, the manufacturer can have their fabric tested to ensure that it is authentic, meaning that they can accurately claim that their materials are made with Lenzing fibers. Once the test confirms the product contains Lenzing fibers, the producer receives a certificate which can be carried through to the brand buyer, enabling the consumer-facing retailer to apply for product licensing as well as branding materials from Lenzing.

Among the marketing materials available for e-commerce stores are free swing tickets and a Digital Hangtag tool. Even in today’s digital retail environment, hangtags still provide an opportunity for brands to communicate benefits to better market products.

A 2020 consumer survey conducted for Lenzing found that 88 percent of clothing shoppers and 86 percent of bedding buyers read hangtags.  White hydrogen

Lenzing E-Branding Service also includes a helpdesk that gives licensees direct access to experts who can assist them in the certification process.

More…

White hydrogen

Setting Up a Recycled Polyester Manufacturing Plant: Project Report 2023

The report “Recycled Polyester Manufacturing Plant Project Report 2023: Industry Trends, Plant Setup, Machinery, Raw Materials, Investment Opportunities, Cost and Revenue” provides a comprehensive guide for establishing a recycled polyester manufacturing plant. The report covers various aspects, ranging from a broad market overview to intricate details like unit operations, raw material and utility requirements, infrastructure necessities, machinery requirements, manpower needs, packaging and transportation requirements, and more.

In addition to the operational aspects, the report also provides in-depth insights into recycled polyester manufacturing process, project economics, encompassing vital aspects such as capital investments, project funding, operating expenses, income and expenditure projections, fixed and variable costs, direct and indirect expenses, expected ROI, net present value (NPV), profit and loss account, and thorough financial analysis, among other crucial metrics. With this comprehensive roadmap, entrepreneurs and stakeholders can make informed decisions and venture into a successful recycled polyester manufacturing unit.  White hydrogen

Recycled polyester, a sustainable textile innovation, has emerged as a beacon of hope in the fashion and textile industry’s quest for eco-friendliness. This revolutionary material is derived from post-consumer plastic bottles, diverting them from landfills and oceans, and transforming them into a versatile, eco-conscious fabric. With its reduced environmental footprint, recycled polyester addresses the growing concerns of resource depletion and plastic pollution. Its adoption aligns with the global shift towards sustainable fashion, offering a guilt-free alternative to traditional polyester.

This textile has emerged as a sustainable and eco-friendly alternative to traditional polyester, driven by several market drivers and trends. One of the key drivers is the growing global awareness of environmental issues and the need to reduce plastic waste. Recycled polyester addresses this concern by repurposing PET plastic bottles and textile waste into new polyester fibers, reducing the reliance on virgin petroleum-based polyester. Consumer demand for sustainable as well as ethically produced clothing and textiles has also fueled the growth of this textile.  White hydrogen

Brands and manufacturers are responding to this demand by incorporating recycled polyester into their product lines. Additionally, government regulations and policies promoting sustainable practices and circular economy principles have further propelled the adoption of this textile. Innovations in recycling technologies and processes have made it more cost-effective to produce high-quality recycled polyester, making it competitive with virgin polyester in terms of price and performance.

More…

Setting Up a Recycled Polyester Manufacturing Plant: Project Report 2023

In a groundbreaking announcement, scientists worldwide have unveiled the remarkable revelation of an exceptionally abundant reservoir of white hydrogen

This discovery, estimated to encompass a staggering 6 to 250 million metric tons, emerges as a transformative catalyst for the evolution of sustainable energy solutions.

White hydrogen, distinguished for its minimal environmental footprint by yielding only water upon combustion, has long been a coveted resource in sectors like aviation and steel production. The prevailing methods for hydrogen production presently heavily lean on fossil fuels, making this discovery a pivotal stride towards establishing a more environmentally conscious economy.  White hydrogen

The magnitude of interest sparked by this revelation stems from its sheer abundance and the untapped potential it presents as a pristine energy source. This finding not only challenges pre-existing hypotheses but also charts a course towards unexplored frontiers in utilizing hydrogen as an expansive and eco-friendly energy reservoir.

Experts are quick to underscore the profound positive ramifications this discovery could have in the larger context of transitioning towards sustainable energy sources. It serves as a paradigm shift, upending established notions regarding hydrogen supply and laying the groundwork for a future characterized by increased cleanliness and sustainability.

The implications of this white hydrogen deposit extend far beyond its immediate environmental benefits.  White hydrogen

The prospect of a more extensive and accessible source challenges industries to reimagine their energy landscapes, offering a compelling alternative to conventional methods reliant on fossil fuels. As the demand for cleaner energy intensifies, this discovery becomes a linchpin in fostering a global shift towards practices that are not only economically viable but also ecologically responsible.

Moreover, the newfound abundance of white hydrogen provides a strategic advantage in diversifying energy portfolios. Its versatility and eco-friendly attributes position it as a frontrunner in reshaping the energy matrix, potentially reducing our dependence on finite and environmentally taxing resources.  White hydrogen

In conclusion, the revelation of this unprecedented white hydrogen deposit represents a watershed moment in the pursuit of sustainable energy. Its vast potential, coupled with its minimal environmental impact, challenges the status quo and propels us towards a future where hydrogen plays a central role in a cleaner and more sustainable global energy landscape.

In a groundbreaking announcement, scientists worldwide have unveiled the remarkable revelation of an exceptionally abundant reservoir of white hydrogen

Stora Enso to produce 1.2 million tonnes of packaging materials at Oulu mill beginning in 2025

With its new production line in the Oulu Mill in northern Finland, Stora Enso will increase its capacity and produce 1.2 million tonnes of sustainable packaging materials in one site starting from 2025.

“This is an ongoing journey, and a shift in mindset towards packaging sustainability is now taking place across all regions. The regulation is most advanced in Europe, but the trend can be seen everywhere. Our winning combination at Stora Enso is the fact that we can offer our customers a large portfolio of premium-quality materials while supporting their efforts in moving towards more sustainable offering,” Tomi Nurminen, Stora Enso’s Head of Product Line, CKB, says.  White hydrogen

Stora Enso’s expanded capacity in Oulu empowers customers to embrace greater sustainability in their choices for food, beverage and personal care packaging. The new high-quality and material-efficient packaging boards enable the use of renewable materials and encourages circular design principles, including bio-based, recyclable, and low carbon options.

In the long term, the use rate, availability, and cost of sustainable materials will evolve as more people prioritise them. There will be more alternatives available, and materials will be prioritised also by different mechanisms such as the producer responsibility costs.

More…

Stora Enso to produce 1.2 million tonnes of packaging materials at Oulu mill beginning in 2025

Opinion: Establishing a New Plastics Value Equation

The world clearly needs a new plastics value equation – one where the utility of plastics is maintained, CO2 emissions are greatly reduced and plastic pollution is prevented.

There can be no doubt that plastics-producing and plastics-using corporations are largely responsible for significantly reducing the environmental impact of these materials. However, companies’ central role in this pursuit cannot be performed in isolation.

Outlining the circular plastics system
There is growing recognition that the solution is a circular economy. The principal goals are to decouple plastic production from its harmful reliance on fossil feedstock and to keep high-quality plastics in circulation.  White hydrogen

Material circularity holds the greatest potential for carbon emissions abatement. As outlined in the recently launched Plastics Transition Roadmap, a 28% reduction in emissions generated by the European plastics industry is achievable by 2030,  setting us on the path to  net-zero by 2050*. All up- and down-stream levers need to be engaged including new reuse business models, design of lighter materials, design for recycling, as well as mechanical and chemical recycling. Further emission reductions can be realized by increased use of renewable sources of power, green hydrogen, carbon capture and alternative feedstocks such as biowaste in the production of plastics materials.

While all of these avenues must be pursued intensively, one of the biggest opportunities to reduce emissions comes from increasing recycling levels. White hydrogen

Intelligent systems that efficiently sort and then recycle multiple waste streams, including those that are difficult to reprocess, are emerging. This technology is progressing quickly, aided by the adoption of AI, which is set to improve waste sorting and processing efficiency. Moreover, concepts to “decentralise” recycling by setting up small-scale hubs near waste-generating sites are gaining traction.
However, note that there is no “silver bullet” to deliver the new plastics value equation. A range of complementary solutions that operate fluidly at scale is required. Establishing such physical and systemic infrastructure relies on contributions by a variety of stakeholders.

More…

Opinion: Establishing a New Plastics Value Equation

Recycled content – Johnson Matthey demonstrates new recycling technology for fuel-cell and electrolyzer materials 17-11-2023

White hydrogen

Recycled car interiors – New technique can capture or reuse CO2 as a chemical source for the production of sustainable plastic 16-11-2023

Recycled car interiors

Crude Oil Prices Trend

Crude Oil Prices Trend by Polyestertime

Crude Oil Prices Trend by Polyestertime

Recycled car interiors are the new chic luxury

Carmakers are lining their electric vehicles with trash — literally — and hoping sparse, eco-friendly cabins will redefine luxury for a new generation of buyers.

Why it matters: Turning recycled denim, fishing nets and plastic bottles — or even mushroom roots — into automotive cockpits may help the industry reduce its carbon footprint.

  • Plus, it’s what today’s premium customers prefer in place of plush leather or polished wood, carmakers say.
  • “Sustainability is luxury,” says Anders Karrberg, head of global sustainability at Volvo Cars. “It speaks to a younger generation.”

Driving the news: Volvo’s newest electric vehicle (EV), the compact EX30 SUV, will test that theory.  Recycled car interiors

  • The Swedish luxury brand is known for its clean and simple Scandinavian design, with light oak interiors that are functional yet beautiful.
  • The EX30, starting at $34,950, puts a whole different spin on that theme, blending an array of recycled and renewable materials into an austere cabin.
  • The bare-bones interior features seat fabric sewn from denim scraps, a dashboard woven with thread from flax and linseed plants, and speckled door accents made from ground-up vinyl window frames.
  • The EX30 has the smallest carbon footprint of any Volvo, the company says.

The big picture: Some automakers have used products like soy or sugar cane fibers in inconspicuous areas for years, like in wiring harnesses under the hood or in the headliner fabric on the inside roof of the car.  Recycled car interiors

  • But there’s a new urgency to use more recyclable and renewable materials as automakers face looming targets to be “carbon neutral” by 2050 or sooner.
  • They won’t hit those goals simply by adding more EVs to their lineups, since evidence shows EVs aren’t driven as much as gasoline-powered cars.
  • To dramatically reduce their carbon footprint, automakers need to decrease greenhouse gas emissions across their operations, including in manufacturing and logistics.

Meanwhile: Like Volvo, Kia is integrating a lot more recycled or plant-based components into its lineup — starting with the EV9, a family-friendly SUV hitting dealerships by the end of the year.  Recycled car interiors

  • The EV9 uses 10 “must-have sustainable materials,” including bio-paint made from rapeseed oil on the door switches, recycled polyethylene terephthalate plastic (PET) in the seats and other surfaces, and recycled fishing nets in the carpet.
  • The South Korean carmaker is taking the trend even further with newly revealed concept cars like the EV3, EV4 and EV5.
  • For example, it’s replacing plastic molding with soft-but-strong plant-based parts “grown” from mycelium, the white hairlike fiber from mushroom roots.

What’s next: Kia eventually wants to develop grown materials using a process called bio-fabrication.

  • “Using mycelium enables us to mimic the processes we see in nature and leverage it to design more sustainable solutions — the material can be grown in any shape you want using a mold,” Marília Biill, who heads up color, materials and fabric design at Kia, notes in a press release.  Recycled car interiors

What to watch: Will these recycled components and biomaterials hold up during the wear and tear of daily driving?

  • Complaints have been rolling in about the durability of a new recycled fabric Apple is using in place of leather for its iPhones and watches.

What they’re saying: “The industry’s been making interiors out of plastic for 70 years, so the supply chain is pretty good at it,” says Stephen Kosowski, manager of long-range strategy and planning for Kia America.

  • “To engineer new parts that are as durable, and have the same look and feel and that will last as long as plastic, is not easy.”
  • “I think we’ve cracked the code on durability,” he said, but the cost of developing sustainable materials remains a challenge.  Recycled car interiors

More…

Recycled car interiors

Technip Energies Creates Reju – An Innovative Polyester Textile Regeneration Company

Building on its technology partnership with IBM and Under Armour, Technip Energies announces the launch of Reju, an innovative company focused on creating new solutions at scale for the vast amount of plastic fiber in textiles that goes unrecycled and ends up as waste. Former Under Armour CEO and apparel industry veteran Patrik Frisk is heading the new company along with Alain Poincheval, COO, a senior executive with Technip Energies.

Technip Energies (PARIS: TE) (ISIN:NL0014559478) announces the creation of Reju, a new company focused on PET (Polyethylene terephthalate) recycling (rPET) of textiles that will leverage the innovative technology co-developed in joint-venture with IBM and Under Armour as well as Technip Energies’ global engineering and technology integration expertise.  Recycled car interiors

Reju will address the fast-growing market of global rPET whose demand from the textile market is expected to grow up to 20 Mtpa by 2033, driven by industry pledges and targets on recycling, regulation and consumer awareness of the need to reduce plastic waste.

Technip Energies, IBM and Under Armour have been working together since 2021 in a joint venture to bring VolCat, an IBM technology for rejuvenating waste PET packaging and polyester, to an industrial scale. VolCat allows the selective breakdown of polymers which IBM first applied to technologies like semiconductor lithography and microelectronics packaging. Reju intends to use this technology to address hard-to-recycle polyester garments and PET packaging lost to the waste stream today. With this technology, acting as a molecular sorter, PET could be regenerated infinitely.

The groundbreaking ceremony for Reju’s demonstration plant took place in September in Technip Energies Frankfurt Research Center with the facility expected to come on stream in 2024.  Recycled car interiors

Arnaud Pieton, CEO of Technip Energies , commented: “Globally, l ess than 1% of PET textiles waste is recycled today . This means that most textiles end up as waste in landfills when they could be repeatedly reused in new clothes. What has been holding the world back in textile circularity is not a lack of demand for textile recycling but the lack of a solution that makes recycling of textiles economical on an industrial scale. For the first time in this domain, a unique scalable technology is directly associated with a scalability expert like Technip Energies. Reju will deliver the promise of economical textile recycling, and we are proud to extend our role as an active agent of circularity.”

Arvind Krishna, CEO of IBM , said: “The health of our planet has never been more pressing, and the amount of fashion apparel and textiles that end up in landfills today is enormous. Recycled car interiors

The good news is that technology can help solve this challenge. IBM is proud to provide its VolCat technology to support Reju in advancing sustainable textile recycling.

We look forward to collaborating with Technip Energies and Reju to champion initiatives like these that place sustainability at the heart of the global textile industry.”

More…

Recycled car interiors

The LYCRA Company launches new LYCRA® FiT400™ fiber

The LYCRA Company, a global leader in developing innovative and sustainable fiber and technology solutions for the apparel and personal care industries, announced today the launch of new LYCRA® FiT400™ fiber for knits.

The company’s latest EcoMade offering is a unique bicomponent fiber engineered to optimize the performance and comfort of knits. It delivers a durable soft hand-feel, low shrinkage and high uniformity to fabrics. LYCRA® FiT400™ fiber is made from 60% recycled PET and 14.4% from bio-derived resources and is GRS certified.

The fiber includes two different polyester polymers, which together create a helical crimp, providing permanent stretch and recovery properties, as well as breathability, cooling comfort and chlorine resistance to fabrics.  Recycled car interiors

LYCRA® FiT400™ fiber helps set the stage for circularity, a key priority for The LYCRA Company. In controlled tests under specific conditions, this fiber was recycled back into new polyester fibers, thereby demonstrating the technical feasibility of this process.*

“We developed LYCRA® FiT400™ fiber to deliver in-demand performance benefits and an enhanced soft hand to the knit fabric category,” said Steve Stewart, chief brand and innovation officer at The LYCRA Company. “This innovation also meets customer and consumer expectations for more sustainable solutions since it is made with recycled and bio-derived materials.”

LYCRA® FiT400™ fiber will be advertised to the trade. The “It’s Time for Better” campaign aims to disrupt the activewear, athleisure and swimwear categories with the message that consumers and the planet deserve better—better-functioning garments offering reduced environmental impact. Recycled car interiors

Fabrics and garments powered by LYCRA® FiT400™ fiber are eligible for LYCRA® XTRA LIFE™ or COOLMAX® EcoMade brand hangtags if they meet specific brand quality standards. Both brands enjoy high levels of consumer brand awareness worldwide.

To learn more about LYCRA® FiT400™ fiber for knits, visit lycra.com.

*LYCRA® FiT400™ fiber is compatible with established polyester chemical recycling processes.

In multiple tests, LYCRA® FiT400™ fiber components were blended with standard polyester components and recycled back into new polyester fibers with comparable performance as standard recycled polyester fibers.  Recycled car interiors

More…

Recycled car interiors

TOMRA to invest €36 million in new infrastructure for Quebec DRS

TOMRA has entered into a long-term agreement to provide ‘reverse vending machines’ for a new deposit return scheme in Quebec starting in 2024.

Following on from the November 1st expansion of Quebec’s deposit return system (DRS), the agreement with the local producer responsibility organization, the Quebec Beverage Container Recycling Association (QBCRA), will see the installation of approximately 1350 TOMRA machines.

The roll-out of automated collection equipment in Quebec will begin in the first quarter of 2024 and continue over three years, during which time TOMRA will make an investment of approximately €36 million in the new infrastructure. Recycled car interiors

“Today, eleven out of 13 Canadian provinces and territories offer deposit return systems, to combat litter, increase recycling, and drive a circular economy,” explained Alain Nault, SVP, General Manager of TOMRA Canada.

“It is inspiring that Quebec is making huge new strides with the modernization of their drink container recycling program, promising to become one of the most efficient systems in the world. TOMRA is excited to be on board as the major provider of automated collection technology for that expansion.”

The Quebec redemption centers will be equipped with TOMRA T9 and T70 reverse vending machines, as well as installations of TOMRA’s Expert Line bulk collection technology for industrial facilities, configured for consumer interaction. Recycled car interiors

The return centers automated by TOMRA include smaller centers that will purchase the reverse vending infrastructure and subscribe to a service agreement, and larger centers that will operate on a throughput model.

The building of new containers’ return centers follows on from the expansion and modernization of Quebec’s deposit return system on November 1st.

Prior to November 1st, the DRS included only beer/soft drink cans, PET and a small portion of one-way glass. Now it will expand to all drinkable beverages between 100ml and 2L, including all cans, plastic and glass bottles, and cartons. The deposit/refund value has also increased from 5 cents to 10 cents, except for glass, which has increased to 25 cents.

The DRS expansion also includes a change to the types of locations where consumers can return their drink containers for recycling. Quebec was until now a return-to-retail model (meaning that supermarkets where drinks are purchased also served as return points), but the province will now move to a “hybrid” return model, with the introduction of return centers, starting from 2024.  Recycled car interiors

More…

TOMRA to invest €36 million in new infrastructure for Quebec DRS

New technique can capture or reuse CO2 as a chemical source for the production of sustainable plastic

To obtain their new compound, the researchers put a raw material into a pressurized reactor filled with CO2. The transformed CO2-based compound is then purified and used to produce monomers to make polymers. When the material is obtained, it is hot-pressed in molds and can be cut into various shapes. Credit: University of Liège / Th.Habets

A team led by chemists at the University of Liège has developed a new polyurethane production technique using CO2 to create new types of easily recyclable plastics. The study, published in the Journal of the American Chemistry Society, could provide a solution for the development of truly sustainable plastics.  Recycled car interiors

Commodity plastics have transformed global industry. Whether in construction, clothing, vehicles or food packaging, these plastics are everywhere in our daily lives, so much so that their global use has been estimated at around 460 million tons in 2019.

“This number is staggering, but not surprising, because plastics, also known as synthetic polymers, have met a large success thanks to their irreplaceable characteristics: they are light, cheap and incredibly versatile,” explains Christophe Detrembleur, chemist at the Center for Education and Research on Macromolecules (CERM) of the University of Liège. “However, the fact that they are difficult to recycle, or even impossible to recycle in the case of thermosets, has serious consequences.”  Recycled car interiors

This impossibility of recycling not only leads to the depletion of the fossil resources used to manufacture them, but also to their very long-term accumulation in nature and the oceans. It is therefore imperative for our society to quickly design and manufacture plastics that can be easily recycled at the end of their life.

In this context, a study led by researchers at the University of Liège and carried out in collaboration with the University of Mons and the University of the Basque Country, reports on a new technique for producing easily recyclable polyurethane plastics.

“The special feature of this approach is the use of carbon dioxide (CO2 )—a major emblematic waste of our society—as a raw material for the production of the building blocks, or monomers, needed to manufacture these new products,” explains Thomas Habets, a doctoral student at CERM and first author of the article. “The structure of the monomers can be easily modified, making it possible to produce plastics with a wide range of properties, from highly malleable elastomers such as silicones to more rigid materials such as polystyrene.”  Recycled car interiors

These plastics have a chemical structure that resembles a three-dimensional network rather than long linear chains. This structure, which is generally associated with thermosets that are very difficult to recycle, makes them more resistant than plastics made from long molecular chains. The polyurethanes created here have new “dynamic” chemical bonds, which means that despite their thermoset structure, they can be reshaped by exchanges of chemical bonds under relatively mild reaction conditions.

More…

New technique can capture or reuse CO2 as a chemical source for the production of sustainable plastic

Duo and Plastix launch shrink film made from waste fishing gear

Duo will manufacture shrink film for food and beverage outer packaging using Plastix’s Oceanix recycled plastic, which is made from 98% maritime waste like fishing nets and ropes.

Fishing gear is one of the deadliest forms of marine waste, reportedly threatening 66% of marine animals and 50% of seabirds. Plastix says that its technology enables the maritime industry to minimise waste fishing gear pollution, which could otherwise end up in the oceans.  Recycled car interiors

According to the companies, Oceanix has undergone a life-cycle assessment and is confirmed to provide up to 94% CO2e savings, when compared with virgin plastics.

Hans Axel Kristensen, CEO at Plastix, says: “Our independent LCA study on Oceanix not only shows world-class CO2 reductions, but at the same time highlights that it is 11 times more climate efficient on freshwater use, five times more on ocean acidification and 43 times more on fossil resource use, compared to virgin plastics.

“It is our mission here at Plastix to reduce maritime plastic pollution and offer the most sustainable recycled plastics as an immediate solution to the world’s climate emergency.

“Duo represents everything we look for in a partner; they demonstrate a shared motivation and drive to make the plastics economy circular to help solve the climate crisis. We’re delighted to partner with them as they step into new packaging territory with exciting products in shrink film.”  Recycled car interiors

Zoe Brimelow, Brand Director at Duo, adds: “Duo remains unwavering in its mission to bring waste full-circle, so this partnership with Plastix was an easy choice; their recycled plastic ticks so many boxes for us as a business. Not only is it an innovative solution to a big environmental problem, but the quality of the green recycled pellet makes for a standout end product too.

More…

Duo and Plastix launch shrink film made from waste fishing gear

NFW and Sage Automotive Interiors Partner to Revolutionise Cars with Biodegradable Plant-Based Leather

Plant-based material company Natural Fiber Welding (NFW) and automotive interior solutions supplier Sage Automotive Interiors (Sage) have partnered to develop animal and plastic-free materials for car interiors.  Recycled car interiors

The strategic partnership aims to manufacture NFW’s plant-based leather MIRUM at scale, offering the automotive industry a recyclable and biodegradable alternative while supporting a circular economy.

“Asahi Kasei, Sage & NFW take a leading role in revolutionizing the market”

Sage, an affiliate of the Japanese company Asahi Kasei, is among the leading global suppliers of seat materials, door panel surfaces, and automobile headliners. With a strong presence in the US, China, and Europe, Sage has been expanding its lineup of growth-potential materials, including leather alternatives.

Dirk Pieper, chairman of the Sage Automotive Interiors board of directors, commented: “By jointly introducing MIRUM®, a plastic-free, plant-based, and fully circular leather alternative, Asahi Kasei, Sage & NFW take a leading role in revolutionizing the market for interior mobility materials.”  Recycled car interiors

Asahi Kasei’s partnership with NFW is part of its “Care for Earth” investment framework, announced in April 2023. Over the next five years, the company will invest $100 million in startups addressing environmental issues. The car interior material industry is among Asahi Kasei’s future growth areas.

The most sustainable option

Based in Peoria, Illinois, NFW was founded in 2015 to develop and manufacture sustainable products using naturally circular, biobased ingredients to replace animal and petrochemical-based materials. Today, NFW has become a platform for plastic-free performance materials spanning sheet goods (plywood and other composite materials), textiles, molded composites, and foams.

The company’s patented leather alternative, MIRUM, is made from natural rubber, fibers, pigments, plant oils, and minerals.  Recycled car interiors

More…

NFW and Sage Automotive Interiors Partner to Revolutionise Cars with Biodegradable Plant-Based Leather

Chemical recycling – Pyrowave introduces nanopurification technology for plastics 15-11-2023

Recycled car interiors

Solid-state batteries – Bio-based Leather Alternative for Auto Interiors Attracts Investment 14-11-2023

Solid-state batteries

Crude Oil Prices Trend 

Crude Oil Prices Trend by Polyestertime

Crude Oil Prices Trend by Polyestertime

Race to all-solid-state batteries draws in Japan’s AGC, Idemitsu

Companies work to slash time and cost of making vital material

Japanese materials maker AGC and energy group Idemitsu Kosan have made strides toward mass producing the main ingredient in all-solid-state batteries, which are seen as a next-generation power source for electric vehicles.

All-solid-state batteries contain solid electrolytes instead of the liquid ones found in lithium-ion batteries.

They have been hailed as a safer, fast-charging alternative for powering EVs, but production at significant levels remains years away. Solid-state batteries

Efforts to build a supply chain for them are moving ahead in Japan, which leads in patent applications for all-solid-state battery technology, followed closely by China.

AGC, the world’s leading automotive glass producer, has built a test facility for solid electrolytes inside the company’s Yokohama Technical Center.

Research is underway on combining up to 10 ingredients and melting them at below 1,000 C to produce a dark molten material. When it cools, the liquid solidifies into a yellow sulfide electrolyte.  Solid-state batteries

“Although it’s a late start, the new technology gives us good prospect of coming from behind,” said Naoki Okahata, a senior manager at AGC. The company announced its entry into sulfide electrolytes in September.

Toyota Motor is developing an all-solid-state battery that can be recharged in under 10 minutes and provide 1,200 kilometers per charge, more than double the range of today’s EVs. Toyota aims to roll out cars with all-solid-state batteries in 2027 or 2028.

Research and development into all-solid-state batteries in Japan goes back two or three decades, with Idemitsu among the pioneers. AGC’s program is less than four years old.

But since September, “the reception has been significant, and we’ve received inquiries from manufacturers around the world,” said an AGC representative.

Ions move more easily between electrodes through solid sulfide electrolytes than with liquid ones. Sulfide solid-state batteries are also resistant to temperature changes, allowing for reduced charge times, extended EV ranges and a smaller battery.

But sulfides are chemically unstable.  Solid-state batteries

To work in EVs, they need to overcome hurdles in durability and high production costs. One of the biggest challenges has been ensuring the chemicals are evenly combined, which has been difficult to do with conventional methods.

This is where AGC stepped in, with over 100 years of glassmaking know-how in melting together materials to produce a homogenous solid.

The company developed its own technology for melting together lithium sulfide and other materials to produce electrolytes of high consistency. The process speeds up the chemical reaction and shortens production time to less than a tenth of conventional methods.

“For automotive applications requiring a large amount of electrolyte, this ensures lower production costs,” Okahata said.

The cost to produce all-solid-state batteries can range from four to 25 times that of lithium-ion batteries, according to the Japan Science and Technology Agency.

Electrolytes account for 76% of materials costs. Lowering mass production costs will be key to bringing solid-state EV batteries into the mainstream.  Solid-state batteries

AGC’s process can also incorporate raw materials that are difficult to mix, which opens up a wider variety of compositions. Since lithium is relatively scarce, AGC looks to use material recycled from used batteries.

AGC will build a large pilot electrolyte facility by 2025, with the goal of bringing the product to market between 2027 and 2028. The company has set an annual revenue target of 10 billion yen ($66 million) by 2030 for the business.

Idemitsu, which ranks second in the world in patent applications for solid sulfide electrolytes, entered into a partnership with Toyota in October to mass produce all-solid-state batteries.

More…

Solid-state batteries

Purecycle sends first shipments of recycled resin

Florida-based polypropylene (rPP) recycler Purecycle has sent out its first shipments of recycled resin after a force majeure and months of delay during construction.

Purecycle, which has built its first recycling plant in Ironton, Ohio, says its unique solvent-based recycling technology allows the company to create rPP that has properties closer to virgin material.

Purecycle said they have recycled 409,000 lbs, or 204.5t, of used polypropylene so far at its Ironton plant. The company has sent its first shipments of rPP to Formerra and Milliken, two US-based polymer producers.

Purecycle aims to increase its production to 4.45mn lbs of input capacity per year by 31 December.  Solid-state batteries

“Ironton is the first facility of its kind and as expected, we are working through many challenges in getting the facility to run on a continuous basis,” Chief executive Dustin Olson said. “We have identified a set of reliability and operational improvements that are expected to be addressed during a two-week outage in November, including the installation of an automatic screen changer on the final product extruder, which has impacted continuous run times.”

The company noted that most of its production issues have been as a result of mechanical issues that are part of an “operational learning curve”.

More…

Solid-state batteries

New oil from plastic that pollutes the sea

Sea plastic is a huge environmental problem, but it can also be a valuable resource. Aenea, a research institute, has developed a way to transform more than 90% of the plastic recovered from the sea into new oil, using a chemical process called pyrolysis. Pyrolysis breaks down the plastic by heating it to over 400 degrees without oxygen.

The process also uses another waste material, the ash from coal plants, as a catalyst.

The new oil obtained from pyrolysis is very rich in hydrocarbons, which can be used to make fuels, high quality chemicals, new plastics, paints, solvents and many other products.  Solid-state batteries

The process is cleaner and more efficient than using the original oil.

The American Chemical Society has certified the results of Aenea’s technology and published them in its online journal ACS Sustainable Chemistry & Engineering.

The challenge of reducing plastic pollution Plastic pollution is a global threat to the oceans and marine life.

Every year, the world produces 400 million tons of plastic waste, and at least 10 million tons end up in the oceans, forming huge floating islands of plastic debris.

These islands interfere with navigation and are only the tip of the iceberg of the damage caused by plastic.  Solid-state batteries

Plastic takes more than 600 years to degrade naturally, and in the sea it breaks into smaller pieces, called microplastics, that attract and absorb other pollutants, such as pesticides, fertilizers, industrial waste, detergents and cosmetics.

These microplastics then enter the food chain, affecting fish, mammals, birds and humans. The effects of plastic on health, nutrition, metabolism and hormones are unknown and worrying.

A local and circular solution The current methods of recycling and disposing of sea plastic are mainly based on mechanical processes, which have many limitations and difficulties, especially when the plastic is mixed with other materials.  Solid-state batteries

Catalytic pyrolysis, on the other hand, offers a more effective and sustainable solution, as it can handle large quantities of heterogeneous and unsorted waste.

Moreover, pyrolysis can be done locally, using small plants installed in ports, which could even produce fuel for boats from the plastic collected at sea, suggests Riccardo Tuffi, the Aenea researcher who carried out the research with his colleagues Lorenzo Cafiero and Doina De Angelis.

This would create a circular and zero-kilometer recycling system, turning a problem into an opportunity.

Solid-state batteries

Bio-based Leather Alternative for Auto Interiors Attracts Investment

NFW, a startup based in Peoria, IL, that produces non-petroleum-based leather alternatives for car interiors, has attracted investment from Asahi Kasei. The Japanese company and its US-based affiliate, Sage Automotive Interiors Inc., said it will work with NFW in a strategic partnership enabling another major step to support global automotive OEMs in reducing the environmental burden of automobiles.

NFW was founded in 2015 and has developed a platform capable of producing precision-engineered leather, foam, and textiles without using animal- or petrochemicals-based materials.  Solid-state batteries

The company’s patented leather alternative, called Mirum, is certified by the US Department of Agriculture as having 100% bio-based content, and is made from natural rubber, fibers, plant oils, pigments, and minerals. The material’s durability and quality make it a suitable replacement for traditional animal-based or synthetic leather products without the use of polyurethane or other coatings.

A yen for sustainable growth

Sage Automotive is engaged in the development, manufacture, and sale of innovative functional materials used in automobile interiors globally. Since its acquisition by Asahi Kasei in 2018, Sage has been strengthening its business activities in Europe and China through mergers and acquisitions, parallel to expanding its lineup of growth-potential materials such as suede and synthetic leather.  Solid-state batteries

As one of the leading global suppliers in the car seat fabric market, Sage has a strong presence among automakers and suppliers.

Dirk Pieper, chairman of the Sage board of directors and lead executive for the development and growth of Asahi Kasei’s overall automotive product offering, stated: “The cooperation with NFW will enable Asahi Kasei and Sage to assist global automakers in reducing the environmental burden of their cars. By jointly developing and manufacturing a non-petroleum-based and fully circular leather alternative, the Asahi Kasei Group takes a leading position in revolutionizing the market for car interior materials.”

Asahi Kasei earmarks $100 million for sustainability-minded startups

The cooperation with NFW is the first project within Asahi Kasei’s Care for Earth investment framework announced in April 2023.  Solid-state batteries

More…

Bio-based Leather Alternative for Auto Interiors Attracts Investment

Novozymes launches Quara LowP

As the world seeks sustainable alternatives to traditional fuels, renewable diesel and SAF production have taken center stage. By 2030, vegetable oils are projected to account for over 40 percent of global feedstock used in renewable diesel and SAF production. However, producers have long grappled with challenges related to feedstock availability, pricing fluctuations, and the ever-increasing market demand.

To address these pressing issues, Novozymes has leveraged its extensive experience in enzymatic degumming, which has resulted in Quara LowP, an innovative solution that gives customers flexibility to process mixed feedstocks without negatively impacting their bottom line.  Solid-state batteries

“This innovation is a testament to our commitment to sustainable solutions for the renewable diesel and SAF industry. Quara LowP offers producers the flexibility to process blends of feedstocks resulting in increased efficiency, reduced operating costs, and lowered environmental impact. It is a great contribution to the industry and a reflection of Novozymes’ dedication to rethinking tomorrow,” said Hans Ole Klingenberg, VP of marketing, Agriculture & Industrial Biosolutions at Novozymes.

A sustainable solution for a growing demand

Quara LowP facilitates the efficient processing of HVO (Hydrotreated Vegetable Oil) and HEFA (Hydroprocessed Esters and Fatty Acids) feedstocks. By pretreating these feedstocks with Quara LowP, producers can achieve higher yields and significantly lower operational costs, all while reducing the environmental footprint of their operations.

This innovation holds profound significance for the HVO and SAF industry:
•    Increased efficiency: HVO/HEFA feedstock producers now have a means to process blends of vegetable oils with other lipid feedstocks without compromising yield or incurring additional operating costs.  Solid-state batteries

The current practice of overusing bleaching earth/bleaching clay to address contaminants in vegetable oils when blending with waste oils is a thing of the past. Quara LowP offers a more efficient and cost-effective solution.
•    Economic benefits: With Quara LowP, producers can enjoy increased yields and lower operating costs, overcoming process inefficiencies.
•    Environmental impact: The industry can benefit from a greener operation, with reduced waste handling hazards and lower water consumption, aligning with the global sustainability goals.  Solid-state batteries

More…

Novozymes launches Quara LowP

Republic Services and Blue Polymers to develop plastics recycling complex

The move is part of a JV established between the companies earlier this year.

Republic Services and Blue Polymers have broken ground on a new plastics recycling complex in Indianapolis, US.

The site encompasses a Republic ‘Polymer Center’ and a Blue advanced polymer production facility.  Solid-state batteries

Both facilities are anticipated to be opened by the end of next year.

They are expected to promote the circularity of plastics and provide recycled materials for sustainable packaging and other applications.

The Indianapolis-based site will comprise two buildings with a combined area of approximately 286,000ft² and create roughly 125 permanent jobs for the local community.

Lauth Group has been selected for the development and construction of the project.

Republic recycling and sustainability vice-president Pete Keller said: “Through our Polymer Center network and Blue Polymers partnership, we’re helping customers achieve their ambitious recycled content goals by producing high-quality recycled plastics.

“As a leader in the environmental services industry and one of the nation’s largest recyclers, Republic Services is uniquely positioned to advance plastics circularity and the region’s circular economy while supporting Indianapolis’ vision for a more resilient future.”

Republic is establishing a national network of Polymer Centers alongside Blue Polymers’ production facilities via a joint venture (JV) established earlier this year.

More…

Republic Services and Blue Polymers to develop plastics recycling complex

Polypropylene (PP) prices drift lower in Europe

This week, PP prices slipped in Europe.  Solid-state batteries
An industry source in Europe informed a Polymerupdate team member, “A bearish pricing sentiment prevailed in the European PP market as demand weakened ahead of winter. A moderate rise witnessed in consumer activity over the last two months has ebbed considerably, with a large number of market participants procuring inventories prior to the onset of winter and making purchases on a need-based basis.”
The source added, “Prices further trended lower as sellers were keen on destocking their excess inventories ahead of the winter season typically marked by depressed demand sentiments.”
In the spot markets, PP injection moulding grade prices were assessed at the Euro 1125-1135/mt FD North West Europe mark, a decline of Euro (-30/mt). PP block copolymer grade prices were assessed at the Euro 1175-1185/mt FD Northwest Europe levels, week on week sharply lower by Euro (-40/mt).
In the contract markets, PP injection moulding grade prices were assessed at the Euro 1420-1425/mt FD NWE Germany and FD NWE France levels, both fallen by Euro (-20/mt) from the previous week. PP injection moulding grade prices were assessed at the Euro 1410 1415/mt FD NWE Italy levels, a drop of Euro (-20/mt) from last week. Meanwhile, PP injection moulding grade prices were assessed at the GBP 1235-1240/mt FD NWE UK levels, week on week down by GBP (-15/mt).  Solid-state batteries
In the contract markets, PP block copolymer grade prices were assessed at the Euro 1500-1505/mt FD NWE Germany and FD NWE France levels, both lower by Euro (-20/mt) from last week. PP block copolymer grade prices were assessed at the Euro 1490-1495/mt FD NWE Italy levels, a drop of Euro (-20/mt) from the previous week. Meanwhile, PP block copolymer grade prices were assessed at the GBP 1305-1310/mt FD NWE UK levels, down GBP (-15/mt) from last week.
FCA Antwerp PP homopolymer prices were assessed at the Euro 1110-1140/mt levels, a week on week fall of Euro (-20/mt), while FCA Antwerp PP copolymer prices were assessed at the Euro 1160-1190/mt levels, a sharp week on week drop of Euro (-40/mt).
Upstream propylene spot prices on Thursday were assessed at the Euro 875-885/mt FD Northwest Europe levels, week on week rise of Euro (+15/mt).  Solid-state batteries

More…

Polypropylene (PP) prices drift lower in Europe

Packaging waste – New project called GRAPHERGIA to revolutionize energy harvesting in textiles and battery technology 13-11-2023

Solid-state batteries

Packaging waste – New project called GRAPHERGIA to revolutionize energy harvesting in textiles and battery technology 13-11-2023

Packaging waste

Petrochemicals PSF – General Motors plans to eliminate rare earths from electric cars

More…

Packaging waste

Crude Oil Prices Trend 

Crude Oil Prices Trend by Polyestertime

Crude Oil Prices Trend by Polyestertime

Axium Packaging acquires Italian company Silte srl

Axium Packaging, specialising in the production of jars, bottles and closures in PET, recycled PET & PP, PCR PP for personal care and food markets, has signed the acquisition of the Italian company Silte srl.

Silte srl, family-owned SME based in Budrio next to Bologna in Italy, is specialising in the production of bottles and jars by extrusion blow and by blow moulding in 2 steps for the Italian markets of personal care, cosmetics and detergents. Founded in 1970, the company Silte generates a turnover of €7.5 million and employs 25 people at its Italian production site. Packaging waste

The integration of the Italian company within the group is intended to enable Axium Packaging to strengthen its presence in Italy and is expanding the ranges of customised and standard packaging from the group while remaining in line with the strategic development objective. This includes offering eco-designed packaging including a customised container and a closure solution, says Axium. The acquisition is claimed to strengthen the position of the group, which is established throughout Europe and currently has five production sites employing 385 people, with consolidated turnover of almost €80 million after this acquisition.

Complementing its range of plastic packaging, Silte is expected to leverage synergies within the group’s other companies to enhance its products and services offerings in the Italian market, with a particular focus on the food industry. Packaging waste

More…

Packaging waste

Lummus and Citroniq Announce Licensing and Engineering Agreements for Green Polypropylene Plants

Agreements highlight Lummus and Citroniq’s progress in meeting surging demand for sustainable polypropylene  

 Lummus Technology, a global provider of process technologies and value-driven energy solutions, and Citroniq Chemicals announced that the two companies have signed licensing and engineering agreements for green polypropylene plants in the U.S. The first plant, scheduled for completion in 2027, will produce 400kta of bio-polypropylene and will be first in North America with this production capability.  Packaging waste

“This agreement demonstrates the progress we continue to make with Citroniq in establishing the first world-scale sustainable bio-polypropylene production process in North America,” said Romain Lemoine, Chief Business Officer of Polymers and Petrochemicals, Lummus Technology. “Combining Lummus’ leadership in polypropylene licensing with Citroniq’s carbon negative production capabilities will help us meet the growing demand for bio-polypropylene and accelerate the decarbonization of the downstream energy industry.”

“Citroniq’s four-plant bio-polypropylene licensing agreement with Lummus Technology is a testament of our commitment to bring sustainable plastics at world-class scale to the marketplace,” said Mel Badheka, President & Co-Founder of Citroniq Chemicals.

In April 2023, Lummus and Citroniq formed a partnership to develop four green polypropylene plants in North America using Lummus’ Verdene polypropylene technology suite. The licensing and engineering agreements announced today are for the first of the four plants.  Packaging waste

The Verdene suite includes four Lummus technologies: ethanol to ethylene technology, dimer technology, olefins conversion technology and polypropylene technology. Lummus is the only technology provider able to supply all the proven, low energy technologies to produce renewable green polypropylene from biogenic ethanol.ù

More…

Packaging waste

New project called GRAPHERGIA to revolutionize energy harvesting in textiles and battery technology

A consortium of 11 partners from six European countries has launched the GRAPHERGIA project, an ambitious 3.5-year Research and Innovation program, funded by €4.5 million under the Horizon Europe’s Graphene Flagship initiative. \

Aimed at redefining the integration of energy solutions into everyday life, GRAPHERGIA aims to transform how we use and store energy. Its main goal is to develop and deploy cutting-edge graphene-based materials into energy harvesting and storage devices. These advances would enable scalable and cost-efficient production of two-dimensional (2D) material technologies for a wide array of applications.  Packaging waste

The project kicked off on 2-3 November 2023 with a commitment to pioneering the domain of smart textiles. “We envision a world where your clothing does more than just look good—it powers your devices, acts as a sensor and connects you seamlessly to the Internet of Things (IoT),” says Prof. Spyros Yannopoulos, the project coordinator for GRAPHERGIA. “Imagine e-textiles that not only adapt to your body but also charge themselves. This is the future we are creating.”

The second key area of exploration for the GRAPHERGIA project is the development of next-generation electrodes for Li-ion batteries. By leveraging the consortium partners’ proprietary technologies, GRAPHERGIA aims to capitalize on the unique properties of 2D materials to enhance battery life and performance, all while maintaining an environmentally friendly footprint.  Packaging waste

“As we move from current technology readiness levels to higher grounds, GRAPHERGIA stands at the forefront of materials engineering. Our collaborative effort aims to bring pilot-scale innovations to the marketplace, setting new benchmarks for the energy sector,” adds Prof. Yannopoulos.

More…

New project called GRAPHERGIA to revolutionize energy harvesting in textiles and battery technology

Sidel Launches Ultra-Small, Ultra-Light PET Bottle for Liquid Dairy Drinks

Sidel’s drinkable yogurt bottles from 65 to 150 ml save material and energy in production, and they’re qualified for 100% rPET.

The latest lightweight PET bottle and preform design from Sidel is aimed at drinkable and probiotic yogurts in sizes from 65 to 150 ml and is suitable for ambient and cold-chain processes. The new small bottle could also be used for juice, nectar, soft drinks, isotonics and tea.  Packaging waste

The global yogurt and probiotic market is predicted to grow at 9.3% from 2023 to 2030, aided by PET’s food-grade bottle-to-bottle recyclability and cost savings that Sidel pegs at up to 20% when switching from HDPE.

Sidel claims best-in-class bottle weights of 3.9 g for a 100-ml extended shelf-life bottle and 5.4 g for a 100-ml aseptic bottle, achieved through a dedicated preform design. The new bottles are qualified for 100% rPET and also enable energy-saving low blowing pressure below 15 bar. The new preform design reportedly ensures a wide process window, even with reduced heating zones.

In addition, the new bottles are compatible with Sidel’s Aseptic Combi Predis FMa aseptic system with dry preform decontamination.  Packaging waste

More…

Sidel Launches Ultra-Small, Ultra-Light PET Bottle for Liquid Dairy Drinks

PLASTICS Report Shows Strong Global Demand for Plastics

The Plastics Industry Association report shows that the U.S. plastics industry’s trade volume for 2022 grew 9.7%.

The Plastics Industry Association (PLASTICS) released its annual Global Trends report during a press briefing and keynote address at the Plastimagen trade show in Mexico City. Presented by PLASTICS’ Chief Economist Perc Pineda, the report found that while global trade volume expanded by 2.7% in 2022, according to the World Trade Organization (WTO), trade volume for the U.S. plastics industry over the same time period grew at more than three times that rate, coming in at 9.7%.  Packaging waste

For 2023, WTO is forecasting a 0.8% increase in world merchandise trade volume, but data from the first half of the year indicates a decline in plastics trade volume compared to the first half of 2022. During this time, however, the U.S. trade balance shifted from a $5.2 billion deficit to a $1.0 billion surplus. Pineda concluded that “it would not be surprising” if the U.S. plastics industry’s trade volume in 2023 once again outpaced the growth in total global merchandise volume.  Packaging waste

China’s slowdown could hinder that growth, given that the country ranks as the third-largest export market for U.S. plastics, Pineda noted. Overall, the U.S. has a trade deficit with China in all plastics; however, it enjoys a $3.1 billion trade surplus in resin.

U.S. plastics industry exports rose 11.8% and imports rose 7.2%, shrinking the overall plastics trade deficit to $7.4 billion in 2022 from $10.0 billion in 2021.

The Global Trends report found that 2022 apparent consumption of plastics industry goods in the U.S. increased 13.7% to $393.3 billion, up from $345.9 billion in 2021.

Global plastics trade volume is estimated to have reached $1.7 trillion, with China, the U.S. and Germany ranking as the top three players in the global plastics trade, based on PLASTICS’ annual Global Plastics Ranking. Packaging waste

PLASTICS Report Shows Strong Global Demand for Plastics

The Italian economy could face a serious threat from the new European rules on packaging and packaging waste, which are about to be voted on in the European Parliament

This is the warning issued by the main associations representing the industry, agri-food and distribution sectors in Italy, who have also contacted Prime Minister Giorgia Meloni to express their concerns.

The new Regulation, which is being drafted in Brussels, would affect more than 30% of Italy’s GDP, with negative effects on the whole economic system, employment and consumer protection.

It would also undermine Italy’s leadership in recycling and ignore more sustainable alternatives such as fully biodegradable bioplastics.  Packaging waste

This is the content of a joint letter signed by Confindustria, Confcooperative, Confcommercio, Confartigianato, Federdistribuzione, and sent to the Prime Minister in the last few days; a position that was also reiterated during a meeting held yesterday in the European Parliament with the Permanent Representation of the Italian Government to the European Union.

The appeal is also supported by Assobioplastiche, which represents the Italian supply chain of compostable plastics.

The damage – the letter states – would not only affect the packaging sector, but also crucial sectors for Italy such as the entire agri-food chain, from production to processing and distribution, putting at risk tens of thousands of businesses and hundreds of thousands of jobs.  Packaging waste

According to the signatories, the proposal would also have an impact on a sector such as that of compostable and fully biodegradable bioplastics, by introducing a series of restrictions on their use, limiting innovation in packaging and preventing the recovery of the huge investments made in innovation and biorefineries.

“The concrete risk – says Rosario Rago, member of the Confagricoltura Council – is that of damaging entire strategic sectors of Made in Italy, with incalculable consequences on the security of supplies and on the national distribution chains, which are also highly integrated at European level”.  Packaging waste

“The most affected ones – he adds – would be the companies in the food supply chain, the core of the national economy and the driving force for exports, since food packaging in general, including disposable packaging, among the most directly affected, is essential for the protection and preservation of food, information on product traceability and hygiene.

Not to mention the risk of the possible loss of hundreds of thousands of jobs.”

The Packaging Regulation was recently amended by the Environment Committee of the European Parliament and will be voted on in this form during the plenary session scheduled for 20 to 23 November, although with the possibility of amendments.

The text resulting from the vote will then be discussed in the Trilogue between the Commission, Council and EU Parliament.  Packaging waste

The Italian economy could face a serious threat from the new European rules on packaging and packaging waste, which are about to be voted on in the European Parliament

Hydrogen Cars – Recover™ And Valdese Weavers Partner For Circularity In The Home Textiles Industry 11-11-2023

Packaging waste

Wordpress Social Share Plugin powered by Ultimatelysocial