Automotive recycling – Exceptional : Hyundai develops new technology that reduces the size of its electric motors 30-11-2023

Automotive recycling

Crude Oil Prices Trend 

Crude Oil Prices Trend by Polyestertime

Crude Oil Prices Trend by Polyestertime

Recycling of automotive shredder residues

In the past, when recycling electronic waste, cars and many other “end-of-life products”, it was important to recover the valuable metal fractions as completely as possible.

This has changed due to the European Commission’s binding target of using at least 25% recycled plastics in new vehicles. To meet this target, additional recycling processes will be necessary in the future.

One of the main targets is that 25% of the plastics used in new cars should come from recycled materials, a quarter of which should come from End-of-life vehicles.

In total, 30% of plastics from scrapped vehicles are to be recycled, compared to only 19% today.  Automotive recycling

The regulation requires car manufacturers to provide dismantling facilities with detailed instructions for the replacement and removal of components at the End of a vehicle’s useful life.

The average car contains between 150 and 200 kg of plastic. The measures would reduce carbon emissions by ~12.3 million tons annually by 2035, according to the Commission. It estimates that the scheme will lead to net revenues of 1.8 billion euros by 2035.

Hamos is a manufacturer of recycling and separation systems for the unmixed processing of various hard plastics from automotive shredder residue. Automotive recycling

When vehicles are shredded, a valuable metal fraction consisting of ferrous and non-ferrous metals is produced on the one hand. On the other hand, the so-called “shredder light fraction” is obtained, in which all other materials such as plastic bumpers, seat upholstery, dashboards, headliners and much more are present in shredded form. In addition to these products, there is also a considerable proportion of rubber, which comes from the car tires that are sometimes shredded together with the car body. The hard plastic fractions produced after separation of the “light fraction” still contain the unwanted rubber pieces from shredded tires. Some of these rubber pieces are in the same density range as the thermoplastics and therefore cannot be separated using density separation processes.

More… Automotive recycling

German, Danish companies ink green hydrogen offtake pact

 The signing of the German-Danish green hydrogen offtake declaration in Copenhagen. Photo credit: German-Danish Changer of Commerce

Thirty-two stakeholders, including Danish producers and suppliers of green hydrogen as well as German offtakers, have jointly signed an Offtake Declaration, highlighting the pressing demand for advancing hydrogen offtake and infrastructure to support the growth of the emerging industry.

The declaration was signed during the German-Danish Green Hydrogen Summit in Copenhagen hosted by Dansk Industri.  Automotive recycling

Recognising the potential for green hydrogen production in Denmark and demand in Germany, the companies are calling on the two governments to accelerate the planned hydrogen infrastructure and establish a link between the supply and demand in the two nations by 2028. To ensure the deployment of the announced hydrogen infrastructure capacity between Germany and Denmark by 2028, the final investment decision for the cross-border infrastructure must be made by mid-2024, the declaration reads.

The current industrial hydrogen demand in Germany is the highest among European nations, reaching 55 TWh annually, with a substantial projected increase in the long term towards 2050. To meet it, Germany anticipates to need 45 TWh- 90 TWh of hydrogen imports by 2030.

Simultaneously, Denmark’s export potential for Germany alone is projected to be 16 TWh in 2030, equivalent to around 4.5 GW of electrolysis capacity. Automotive recycling


Automotive recycling

HKRITA unveils G2G, an innovative garment recycling system

The Hong Kong Research Institute of Textiles and Apparel (HKRITA) has unveiled a groundbreaking garment recycling system known as Garment to Garment (G2G). Climate activist and sustainability content creator Sam Bentley recently shared details of this innovative system, emphasizing its eco-friendly, closed-loop approach that eliminates the need for water or chemicals, as highlighted on the official G2G website.

In a comprehensive video presentation, Sam Bentley elaborates on the G2G process, which involves the transformation of old garments into a fibrous web through a cleaning procedure. This web is then skillfully spun into durable twisted yarns, which, in turn, are mechanically knitted into entirely new clothing items. A noteworthy feature of the G2G machine is its incorporation of a 3-D body scanner, allowing the creation of tailor-fit garments on-site.  Automotive recycling

Although the G2G machine was initially established in 2018 as a mini-scale production line within a retail setting, where it recycled post-consumer garments into new apparel, it has recently gained renewed attention due to Sam Bentley’s social media endorsement. The fashion industry’s staggering annual production of 100 billion garments contributes significantly to global carbon air pollution (2 to 8 per cent) and generates a substantial 20 per cent of global wastewater. Additionally, more than 100 million tonnes of textile waste find their way into landfills each year. The deployment of G2G technology emerges as a promising solution with the potential to significantly reduce this immense waste.

The G2G system stands out as a breakthrough in sustainable textile practices, offering an efficient and environmentally friendly process for transforming old clothes into new ones. Its potential impact on alleviating textile waste aligns with the escalating concerns surrounding the environmental footprint of the fashion industry. Automotive recycling

Automotive recycling

Pakistan, China forge textile ties

Delegation explores silk hub, paves way for collaboration

A Pakistani delegation, led by Hussain Haider, Pakistan’s Consul General in Shanghai, visited Shengze Oriental Textile City in Suzhou, China, and met with representatives from local textile enterprises.

During the meeting, Haider introduced the trade and investment environment of Pakistan and China, with a particular focus on the preferential policies available to Chinese investors in Pakistan. “Currently, Pakistan’s textile exports to China mainly consist of cotton yarn, apparel, cotton fabrics, and home textiles, with cotton yarn accounting for 73% of the total,” he stated.  Automotive recycling

Expressing a strong desire for deep cooperation with Shengze’s silk and textile industry cluster, he extended an invitation to Shengze’s enterprises to visit Pakistan and gain first-hand knowledge of the trade and investment policies.

Shengze is renowned for its robust silk and textile industry with a rich history. To gain insights into the dynamics of the textile sector and explore potential collaborations, the delegation toured several textile enterprises in Shengze Oriental Textile City and reached preliminary cooperation intentions. Haider said, “We hope to further communicate and connect with Shengze Oriental Textile City.  Automotive recycling

We sincerely invite Shengze’s enterprises to invest and establish factories in Pakistan, aiming to achieve mutual benefits and contribute to the deepening of China-Pakistan cooperation.”


Pakistan, China forge textile ties

Hyundai develops new technology that reduces the size of its electric motors

Hyundai has recently unveiled a groundbreaking technology, named “Uni Wheel,” poised to revolutionize electric mobility by significantly shrinking the size of electric motors. This innovation not only enhances the efficiency and performance of electric vehicles but also creates more space within the vehicle for passengers and their belongings.

Functioning akin to a hub motor, the Uni Wheel incorporates a universal drive system that relocates essential drive components into the wheel, a distinctive departure from conventional designs. Notably, the motor itself remains positioned outside the wheel, maintaining a streamlined and compact form factor.  Automotive recycling

The key breakthrough lies in the Uni Wheel’s strategic relocation of the gearbox into the wheel hub, leading to a substantial reduction in motor size. This ingenious design allows Hyundai to adopt a small motor for each wheel, a departure from the reliance on a single large drive unit for an entire axle. In essence, it represents a universal traction system that integrates transmission components inside the wheel, leaving the electric motor external.

By employing this technology, Hyundai achieves advantages in terms of overall efficiency, performance, and handling. The Uni Wheel system’s unique configuration enhances the overall driving experience while contributing to a more spacious and versatile interior for occupants.  Automotive recycling

Park Jong-sul, a senior researcher at Hyundai Motor Company and Kia Advanced Technology Institute, emphasized the company’s commitment to redefining the mobility experience for customers. He stated, “We are developing technology so that customers can experience mobility in a completely different and new way than before.” Hyundai has rigorously tested the durability of the Uni Wheel, affirming its functionality and reliability.

Despite this significant leap forward, Hyundai has not yet revealed plans for the commercial release of the Uni Wheel system, indicating that further development and testing may be underway.

As the automotive industry continues to evolve, Hyundai’s innovative approach to electric motor design showcases a commitment to pushing the boundaries of what is possible in the realm of sustainable and efficient transportation. Automotive recycling

Hyundai develops new technology that reduces the size of its electric motors

Luxury on the body and underfoot too 

As was amply illustrated at ITMA 2023 this June, tradition and innovation go hand in hand for members of UCMTF, the French Textile Equipment Manufacturers, including NSC Fibre to YarnSuperba and Spoolex.

NSC Fibre to Yarn has a history dating back to 1812 – at a time when the British blockade of France during the Naploeonic Wars obliged French companies to start developing their own textile machinery and components.

Thirty years later, in the 1840s, its patents established the basic principles for the combing, recombing and spinning preparation of short fibres such as wool, silk and flax.

Long fibres

Move forward roughly 110 years to 1950, and NSC Fibre to Yarn had also started to specialise in the machines for combing and spinning long fibres such as Egyptian and Pima cottons. Such fibres have been prized for many years for their strength and durability, smoothness and lustre, and reduced pilling.  Automotive recycling

A series of acquistions over the past 20 years has subsequently consolidated the company’s position as a leader in textile lines for luxury long-staple fibres, as well as wool and technical fibres.

The company’s latest ERA50 comber is an evolution of the well-known ERA40 and benefits from the latest advances in mechatronics and a complete Industry 4.0 data collection system.

Heat setting

In addition to apparel, wool is associated with the most luxurious of carpets, and machinery for the heat-setting of carpet yarns – whether from natural fibres like wool or synthetics – is a speciality of Superba, which was founded in 1950.

The heat setting process is crucial in enabling such yarns to be more successfully woven or tufted into wall-to-wall carpets, increasing their thickness, enabling different yarns to be combined and graduated dyeing affinities to be accommodated.

The important twist of the yarns is set at a high temperature in a continuous process to ensure it remains permanent.  Automotive recycling


Luxury on the body and underfoot too 

Rock Tech and Electra sign North American lithium supply agreement

Rock Tech Lithium will partner with Electra Battery Materials Corporation to supply recycled lithium from Electra’s Ontario battery recycling operations for upgrading to battery-grade lithium chemicals in Rock Tech’s lithium refineries. The partnership agreement took the form of a memorandum of understanding. Both companies will use their experience to develop a closed-loop service for the recycling of lithium-ion battery manufacturing scrap, end-of-life batteries, and black mass. Automotive recycling

“Partnering with Rock Tech . . . complements our recycling strategy by allowing us to further upgrade recycled lithium into a battery-grade product,” said Trent Mell, Electra’s CEO. “Collaboration is crucial to create a closed loop for all critical minerals we recover in our black mass refining operation. Jointly with Rock Tech, we are excited to offer an end-to-end battery recycling solution specifically for the lithium market. The partnership is expected to generate an additional revenue stream for Electra, improve our service offering for our clients, and facilitate future growth.”

“At Rock Tech, we are thinking long-term,” emphasized Klaus Schmitz, Rock Tech’s COO. “Developing localized circular lithium value chains is key for this. Electra is an important partner to realize this vision in Ontario and North America. Our collaboration unlocks an important lithium sourcing option and ensures continuous long-term supply for our plants. Our collaboration ensures that lithium recovered from the recycling of end-of-life batteries or battery manufacturing scrap is recovered, refined, and returned to the battery value chain as battery-grade lithium product.”  Automotive recycling


 Electra Battery Materials Corporation

Avantium PEF – Dieffenbacher highlights Fibercut system for increased productivity 29-11-2023

Automotive recycling

Avantium PEF – Dieffenbacher highlights Fibercut system for increased productivity 29-11-2023

Avantium PEF

Crude Oil Prices Trend 

Crude Oil Prices Trend by Polyestertime

Crude Oil Prices Trend by Polyestertime

Avantium to offer PEF solution for Heijn’s own-brand packaging

Avantium has embarked on a strategic partnership with Albert Heijn, a prominent Dutch supermarket chain, with the aim of facilitating a shift towards more sustainable packaging solutions for Heijn’s proprietary products. Avantium, recognized for its expertise in sustainable chemistry, is offering its innovative polyethylene furanoate (PEF) solution as a pivotal element in the creation of diverse packaging options for the retailer.

PEF, characterized by its 100% plant-based composition and circular polymer structure, stands out as a fully recyclable material.  Avantium PEF

Its remarkable barrier properties empower brands and businesses to extend the shelf life of both beverages and food items. The versatility of PEF makes it suitable for a broad spectrum of applications, including the manufacturing of bottles and various types of packaging.

At present, Avantium is in the final stages of initiating operations at its commercial PEF plant. The operationalization of this plant will mark the commencement of utilizing the PEF solution for the production of a new fruit juice bottle for Heijn. The manufacturing of this PEF-made bottle will be executed by Refresco, a global beverage solutions provider catering to diverse brands and retailers.  Avantium PEF

Avantium proudly asserts that this initiative will result in the introduction of the first PEF-made product within a supermarket chain’s own-brand product line. Tom van Aken, the CEO of Avantium, emphasized the significance of this collaboration, stating, “With Albert Heijn as a partner, Avantium can further scale up and expand the PEF value chain to meet the growing global demand for circular and renewable material solutions.”

The commercial PEF plant, situated in Delfzijl, the Netherlands, is designed to have a production capacity of five kilotons of furandicarboxylic acid. This acid serves as a fundamental building block for chemicals and plastics, including PEF. The anticipated timeline for the commencement of commercial production at the Delfzijl site is the second half of 2024.  Avantium PEF

Marit van Egmond, the CEO of Heijn, expressed the company’s commitment to sustainability, stating, “With the use of PEF, we are giving substance to our goal of making packaging more sustainable, besides reduction, recyclability, and reuse, fossil-free materials are high on our wish list.” This collaboration follows a notable offtake agreement signed in August 2022, where Brazil’s Ambev committed to purchasing Avantium’s recyclable PEF material for producing soft drink bottles.

Avantium PEF

PPWR – European Parliament discriminates plastics packaging

“Packaging neutrality objectives and similar material circularity targets will create the level playing field that Europe really needs.” stated EuPC managing director Bernard Merkx in his first reaction to the vote.  Avantium PEF

Last week, the European Parliament adopted its negotiating position on the Packaging and Packaging Waste Regulation (PPWR) proposed last year by the European Commission. Unfortunately, many amendments from the Environmental Committee initial Report that single out plastic packaging have passed the consensus of the Plenary session.

European Plastics Converters are disappointed by the unfounded tailored measures against plastics, which seem to be based predominantly on emotional motives. Some examples of such emotional motived voting are special reduction targets for certain plastic packaging, exemptions for composite packaging from the recyclate use quotas, and bans on single-use stretch films and more.

The lack of rational support to a plastics converting and recycling industry that has been working for improved sustainability, recyclability, circularity as well as on improved performances of its packaging offer is a missed opportunity.  Avantium PEF

In our perspective, topics like additional food waste as a direct consequence should have been addressed, whereas plastic packaging reuse quotas and others have not been very well assessed either. In our view the voted amendments will therefore not bring the expected environmental goals the Parliament desires.

Moreover, the lack of consideration for how to reach the ambitious recycled content targets adds perplexity to their feasibility in coming years. The proposed targets are based on the assumption of a given consistent availability of high-quality recycled raw materials, that has proven to be already lacking today. Linear waste management systems in many Member States with still open landfills and subsidized incineration have for years been blocking required additional investments in high-quality infrastructure and high-tech systems for collection, sorting and recycling.  Avantium PEF

Practical solutions such as credit-based systems and clear exemptions must be included in a final version of the PPWR to allow the plastics converting and recycling industry, mostly composed of SMEs, and their customers, to effectively comply and support the market of high-quality recycled materials to naturally grow.

Further concerns come from the ban of packaging falling in recyclability grade D or below, which may negatively affect future innovation and will have unforeseeable impacts on many, widely recycled packaging formats. The possibility for Member States to adopt more stringent national measures ultimately undermines the harmonisation spirit of the regulation and risks creating the patchwork effect that we witness today in the sustainability arena.  Avantium PEF


Avantium PEF

Paques Biomaterials and Looop are set to join forces in a groundbreaking collaboration aimed at producing Polyhydroxyalkanoate (PHA) from residual agri-food streams

With over a decade of experience, Paques Biomaterials specializes in a technology that utilizes bacteria within organic waste to generate the biopolymer PHA. Looop, on the other hand, acts as an independent knowledge partner and supplier, providing the agri-food sector’s residual flows, commonly known as by-products. Avantium PEF

The synergy between these two entities is evident as they pool their expertise to create a natural alternative to conventional plastics. René Rozendal, co-founder of Paques Biomaterials, emphasizes the significance of this collaboration, stating, “For us, the collaboration with Looop means a reliable supply of residual flows to produce PHA.” He highlights Looop’s proficiency in valuing residual flows and the ability to combine diverse agri-food by-products, ensuring the optimal raw material for PHA production.

PHA, often hailed as the most promising biopolymer, is noteworthy for being biodegradable in both land and sea environments without the need for specific conditions or equipment. This makes PHA a crucial solution in combating plastic pollution and microplastics.

Expressing their commitment to exploring PHA production further, Looop and Paques Biomaterials are dedicated to maximizing the value of organic residual flows. Kelly Vermeer, Procurement & Development Manager at Looop, asserts, “Producing PHA provides higher valorization of various by-products, ensuring lower CO2 emissions and aligning with our mission and vision.”  Avantium PEF

Looop, specializing in reintegrating organic residual flows into the food chain, operates with a strong focus on Responsible Consumption (Goal 12) and Partnership for the Goals (Goal 17) as part of the Sustainable Development Goals. Paul Slits, a shareholder of Looop, emphasizes the importance of partnerships in their circular business model and expresses confidence in the collaboration with Paques Biomaterials, describing it as a partnership that simply “feels good.”

Paques Biomaterials has an array of collaborations underway, including partnerships with Dutch organizations dealing with industrial wastewater, a consortium with various water boards for municipal wastewater, and an international collaboration with a multinational entity in South Korea.  Avantium PEF

The coming months will witness the tangible realization of the collaboration between Looop and Paques Biomaterials, spanning both business and technology development in their shared pursuit of a harmonious world in balance with nature.

Avantium PEF

China faces yet another economic setback as the shadow banking sector takes a hit with the collapse of Zhongzhi Enterprise Group (ZEG)

Following the crises of Evergrande and Country Garden, ZEG, one of the country’s major shadow banks and a significant asset manager, has declared liabilities of up to $64 billion, intensifying concerns that the real estate debt crisis is extending its grip into the financial domain. Avantium PEF

In a letter of apology to investors, ZEG, which holds substantial exposure to the Chinese real estate market, disclosed total liabilities ranging from 420 billion yuan ($58 billion) to 460 billion yuan ($64 billion). The company’s asset management arm, at its zenith, reportedly managed $139 billion. Authorities in China initiated an investigation into “suspected illegal crimes” against the company shortly after its admission of insolvency. “Criminal coercive measures” have been taken against numerous suspects, although the identities and roles of these individuals within the company remain unclear. The founder, Xie Zhikun, passed away in 2021 due to a heart attack. Tensions surrounding Zhongzhi first surfaced in July when a major subsidiary trust company, Zhongrong International Trust Co, failed to meet payments on numerous investment products, exposing the high default risks associated with the underlying real estate assets of the Zhongrong Trust Fund.  Avantium PEF

The escalating issues at Zhongzhi, a key player in China’s $3 trillion shadow banking sector, have rekindled concerns about contagion risks. China’s heavily indebted real estate sector, grappling with a liquidity crisis since 2020, has witnessed developer defaults since late 2021, with Evergrande being among the initial giants to succumb.

Andrew Collier, a shadow banking expert at Orient Capital Research, notes the historical pursuit of a real estate bubble in China, driven by capital influx. As the real estate sector experiences a downturn amid economic slowdown, Collier suggests that ZEG’s problems might only mark the onset of a more extensive issue, potentially spreading to other forms of shadow banking and even traditional banks in the country. Avantium PEF

The unfolding situation raises apprehensions about the broader stability of China’s financial landscape.

China faces yet another economic setback as the shadow banking sector takes a hit with the collapse of Zhongzhi Enterprise Group (ZEG)

Dieffenbacher highlights Fibercut system for increased productivity

Dieffenbacher’s fully automated cutting and stacking system enables automated SMC processing applications.

Automotive suppliers and others who manufacture composite parts can increase production as much as 7% with Dieffenbacher’s (Eppingen, Germany) fully automated Fibercut cutting and stacking system featuring a quick-change unit. The Fibercut system enables automated processing of sheet molding compound (SMC) materials. While many SMC applications use error-prone and time-consuming manual processes, Dieffenbacher’s fully automated Fibercut SMC cutting and stacking system provides increased productivity and plant efficiency.  Avantium PEF

Fibercut consists of a cutting unit with a cutting belt, a stacking table and a quick-change unit for SMC on coil or in festoons to further increase productivity. The cutting unit communicates with the stacking gantry or robot and is able to implement complex laying patterns automatically.

“Different cutting patterns can be realized at the same time with maximum flexibility,” says Marco Hahn, director sales of the forming business unit at Dieffenbacher. “Using an active compensation cut, deviations in the weight of the material stack will be actively corrected. This ensures compliance with weight tolerances and maximum reproducibility even with the geometric complexity of the SMC layer structure.”  Avantium PEF

The quick-change unit increases the system’s availability by enabling a complete SMC coil or festoon changeover within a few minutes. Including gripper change stations, the production line can be rapidly switched over to another component. Additionally, the Fibercut monitors when the SMC material nears its end and notifies the operator. The operator can prepare to change the material without an unplanned stop of the machine. The quick-change unit is equipped with an automated foil removal system to reduce the “on-air time” of the SMC to preserve the styrene for optimal part quality.

Because the material can be prepared offline and the material change process runs fully automatically, the quick-change unit can save 10-15 minutes per change.

Assuming annual production of 80,000 pieces, SMC consumption of 2 million lbs per year and 600 related coil changes, output can be increased by 3,000-4,500 parts or 3-5% per year.  Avantium PEF

Dieffenbacher highlights Fibercut system for increased productivity

AkzoNobel Invests in a New Manufacturing Facility to Produce Bisphenol-Free Coatings

AkzoNobel is investing €32 million in a new plant at Vilafranca del Penedès in Spain to manufacture bisphenol-free coatings for the metal packaging industry in Europe, Middle East and Africa.

The Minister of Employment in Catalonia, Roger Torrent attends the breaking ground ceremony for AkzoNobel’s new production centre for bisphenol-free coatings, which will support stringent bisphenol regulations in force in Europe.  Avantium PEF

This content was written and submitted by the supplier. It has only been modified to comply with this publication’s space and style.

The new facility, which is expected to be operational by mid-2025, will create around 40 new jobs and has been designed according to the best possible eco-efficiency standards.

Jim Kavanagh, Director of AkzoNobel’s Industrial Coatings business, says the new facility will help the company respond to a strong need from the packaging industry. “The Vilafranca plant will allow us to offer leading-edge products to any customer and country in EMEA, responding to the most stringent bisphenol regulations in force in Europe. The investment is in line with our view that bisphenols of any kind are no longer required to create safe coatings.”  Avantium PEF

The announcement follows the recent launch of next generation coatings technology including the first two products in its new Accelstyle range. This further illustrates the company’s commitment to giving customers the tangible support they need to transition to a new future: “Both new products – Accelstyle 100 and 200 – can be seamlessly introduced into existing production processes, allowing can makers to transition to coatings that are free from materials of concern, while remaining as commercially viable as possible,” Kavanagh continues.

AkzoNobel Invests in a New Manufacturing Facility to Produce Bisphenol-Free Coatings

EPA studies costs of recycling programs, awards grants

The U.S. EPA is sponsoring a study of the costs and benefits of municipal recycling programs, and at the same time the agency is directing more funding toward the sector. 

“Despite numerous reported benefits of recycling, many areas lack a dedicated program for various reasons, including economic challenges, and many materials that could be recycled are not,” a press release from the National Academies of Sciences, Engineering and Medicine noted.  Avantium PEF

“Recognizing a need to better understand the costs and benefits of administering MSW recycling programs,” the release continued, “Congress called on the National Academies to conduct a study on the programmatic and economic costs of these programs and to produce recommendations to facilitate their effective implementation.”

Accordingly, a committee will review current cost information of recycling programs in municipal, county, state and tribal governments, then provide several options, including policy approaches, to help facilitate effective implementation of more and better programs.

The analysis will include environmental justice considerations such as different population sizes and demographics, different geographical locations, different economies, the type of recycling program and its capabilities, infrastructure needs, end market opportunities and various mandates such as single-stream vs. dual-stream or curbside food and yard material pickup services.  Avantium PEF

In-scope materials are paper, metals, glass, PET and HDPE, food scraps and yard material that are “converted into raw materials and used in the production of new products.” Textiles, e-scrap, construction and demolition debris, household hazardous waste, auto bodies, municipal sludge, combustion ash and industrial process wastes are specifically out of scope for the study, the press release noted.

Grant awards

In addition, the EPA recently announced its plans to reclassify solar panels as universal waste instead of hazardous waste and to create a universal waste category specifically for lithium-ion batteries in order to streamline and increase recycling of the materials.


EPA studies costs of recycling programs, awards grants

Sand Battery – The Role of Chemical Engineering in Waste Management Strategies 28-11-2023

Avantium PEF

Hydrogen vehicles – Recycled plastic reduces carbon consumption by up to 87 per cent 27-11-2023

Hydrogen vehicles

Petrochemicals Ny66 – Polymers : PET – r-PET – Filament grade semidull chips -Filament grade bright chips – Ny6 – Ny66 – PP 


Hydrogen vehicles

Crude Oil Prices Trend by Polyestertime

Crude Oil Prices Trend by Polyestertime

Recycled plastic reduces carbon consumption by up to 87 per cent

Recycling works: plastic packaging specialist ALPLA operates state-of-the-art plants worldwide under the brand ALPLArecycling for the production of rPET (recycled PET) and rHDPE (recycled HDPE). Calculation of the product carbon footprint by the independent consultancy c7-consult now provides new data for a total of four plants in Mexico and Germany. Carbon reductions of up to 87 per cent compared to virgin materials confirm the climate protection effect of recycled plastics and the ecological importance of regional bottle-to-bottle loops. Hydrogen vehicles

ALPLA processes used plastic packaging into recyclate. The recycled material produced in Mexico and Germany causes up to 87 percent less CO2 emissions than virgin material.

ALPLA is focusing on the circular economy: the global packaging specialist invests more than 50 million euros annually in recycling and uses state-of-the-art technologies to produce recycled material. With an installed and projected output capacity of 350,000 tonnes per year, the company is one of the world’s leading plastics recyclers. Analyses performed by the life cycle assessment specialist c7-consult now confirm efficient production at a total of four additional sites in Mexico and Germany. There, ALPLArecycling produces rPET and rHDPE, which produces up to 87 per cent fewer carbon emissions than virgin materials.

‘The figures confirm our path. We produce climate-friendly recycling solutions with a regional focus and convert the material into new packaging, thereby promoting the bottle-to-bottle loop. In this way, we ensure there are safe, affordable and sustainable packaging solutions all over the world,’ emphasises Georg Lässer, Director of Business Development, Procurement and Sales, Recycling, at ALPLA.  Hydrogen vehicles

Circular economy pioneers in Mexico

ALPLArecycling produces 30,000 tonnes of rHDPE per year at its Toluca recycling plant in Mexico. Production in Toluca causes 0.69 kg of CO2e per kilogram. This is 70 per cent fewer emissions than with HDPE virgin material (2.32 kg of CO2e per kilogram[1]). ALPLA has been operating what was the first PET recycling plant in Latin America at the time in Toluca since 2005 within the joint venture IMER (Industria Mexicana de Reciclaje S.A. de C.V.) together with Coca-Cola FEMSA and The Coca-Cola Company. It has an annual production capacity of 16,000 tonnes of rPET. According to the analysis, production causes only 0.38 kg of CO2e per kilogram, which is 87 per cent less than virgin PET (2.90 kg of CO2e per kilogram[2]).  Hydrogen vehicles

The rPET production capacity in Mexico will be increased to 51,000 tonnes next year. The PLANETA plant (Planta Nueva Ecología de Tabasco) in Cunduacán is currently being built in cooperation with Coca-Cola FEMSA. The joint venture partners are setting new collection priorities with the model of paying for the receipt of used PET bottles and with social cooperations. ‘Recycling is a key element in packaging solutions of the future. We want to convince people of the benefits and are drawing on substantiated data to do so. Exact analysis of our plants also enables us to improve our ecological footprint in a targeted manner,’ explains Carlos Torres Ballesteros, ALPLA Managing Director, Mexico, Central America and the Caribbean.  Hydrogen vehicles


Hydrogen vehicles

China in red, lithium in free fall. Here because

This financial turbulence unfolded against the backdrop of Beijing’s concerted efforts to rescue the beleaguered real estate sector, strained under the weight of mounting debt. Compounding the unease were anxieties surrounding China’s October PMI figures, slated for release the following week, following September readings that signaled a contraction in manufacturing and a deceleration in service activities.

Amidst these concerns, skepticism swirled regarding the efficacy of Beijing’s various real estate stimulus measures, including the decision to allow banks to extend unsecured short-term loans to sector companies.  Hydrogen vehicles

Despite the day’s downturn, the Hang Seng index was on course for its second consecutive weekly gain, rising by approximately 1.0%.

This optimism stemmed from the hope that the Federal Reserve’s tightening trajectory might be nearing its conclusion, with the first rate cut anticipated in March 2024.

Meanwhile, Japan grappled with a surge in inflation, reaching 3.3% in October 2023, up from the previous month’s 3.0%.

This marked the highest level since July, with core inflation also climbing to 2.9%, just below the consensus of 3.0%.  Hydrogen vehicles

Notably, the Bank of Japan’s 2% inflation target remained elusive for the 19th consecutive month.

In a starkly different economic arena, the price of Chinese lithium carbonate, denominated in yuan, continued its month-long descent, plummeting by 75% for the year.

An oversupply in the market exerted downward pressure on prices, prompting electric vehicle manufacturers to reevaluate their strategies.

Chinese lithium carbonate prices dipped by 2.3% on Thursday and a staggering 20% thus far in November, with the last recorded daily gain occurring on October 25th.

The spodumene, a lithium-bearing rock extracted in Australia, witnessed more than a 50% decrease in value in 2023.  Hydrogen vehicles

Shifting the focus to geopolitics, Argentina’s newly elected president, Javier Milei, adopted a more tempered tone compared to his previous sharp rhetoric.

Following his victory, Milei extended well-wishes to the Chinese people, a notable departure from his earlier characterization of the Chinese government as an “assassin” during an August interview.

Milei’s gesture included responding to a congratulatory letter from Xi Jinping and hinting at the potential inclusion of former central bank president Luis Caputo in a significant economic role.  Hydrogen vehicles

Hydrogen vehicles

Hydrogen, often hailed as a beacon of eco-friendly transportation,  particularly in the context of fuel cell technology

While electric cars dominate green conversations, fuel cell-powered vehicles, like the Toyota Mirai and Hyundai Nexo, are making their mark in the Italian automotive landscape. These models leverage hydrogen-oxygen reactions to generate electrical energy, offering the notable advantage of rapid refueling, with the Mirai boasting a mere five minutes for a substantial range exceeding 600 km. However, this green innovation comes at a price—both the Mirai and Nexo command high price tags of 66,000 and approximately 80,000 euros respectively.  Hydrogen vehicles

Beyond these initial offerings, car manufacturers like Toyota and BMW are exploring hydrogen’s potential in different vehicle types. Toyota showcased the GR Yaris H2, integrating hydrogen as fuel while maintaining a modified turbocharged internal combustion engine. On the other hand, BMW, an early advocate for hydrogen engines since 2000, remains in the experimental phase, producing small series for testing purposes, as seen in the iX5 Hydrogen.

Despite promising strides in vehicle technology, a critical hurdle to widespread adoption is the lack of infrastructure. With only two operational hydrogen refueling stations—located in Bolzano and Mestre—accessing fuel remains a challenge for Italian motorists. Hydrogen, currently perceived as more suitable for heavy transport, is reflected in logistical decisions favoring areas like the Brenner road axis and the Trieste-to-Turin corridor. The Ministry of Transport’s 2023 ranking of 36 new projects earmarks public funding for expanding the hydrogen refueling network by 2026, encompassing regions from Valcamonica and Umbria to Puglia and Calabria.  Hydrogen vehicles

Territorial imbalances compound the issue, as private mobility needs are not met uniformly across regions. Of the 36 proposed projects, only six are slated for implementation in southern regions, with Veneto leading the charge with nine refueling stations. Comparatively, Germany, a hydrogen pioneer, already boasts 92 supply points, revealing the substantial gap in Italy’s hydrogen infrastructure development. As European nations race toward hydrogen expansion goals, Italy aims for 70 stations by 2030, falling behind Germany, the United Kingdom, and France in this ambitious pursuit.

The journey toward making hydrogen a viable solution in Italy’s transportation landscape is underway, but substantial challenges must be surmounted for it to become a mainstream reality.  Hydrogen vehicles

Hydrogen, often hailed as a beacon of eco-friendly transportation, is gaining attention in Italy, particularly in the context of fuel cell technology

Hydrogen vehicles represent a promising yet underutilized facet of the automotive landscape, offering a unique alternative to traditional gasoline-powered cars and electric vehicles

Although their popularity has been eclipsed by the widespread adoption of electric vehicles, understanding how hydrogen vehicle engines work sheds light on their potential and the challenges they face.

At the heart of hydrogen vehicles is the fuel cell, a device that enables the conversion of hydrogen into electricity through an electrochemical process. Unlike conventional internal combustion engines, hydrogen vehicles employ electric motors for propulsion. This distinction positions them as electric vehicles (EVs), despite the divergent energy source.

In a hydrogen vehicle, the journey from hydrogen gas to electrical power begins with the storage of hydrogen in a high-pressure tank.  Hydrogen vehicles

This gaseous fuel is then directed to a fuel cell stack, a crucial component housing a catalyst, often platinum. As hydrogen molecules interact with the catalyst in a controlled electrochemical reaction, electrons are released, generating electrical energy.

This process is known as the proton exchange membrane (PEM) fuel cell technology, one of the most common designs in hydrogen vehicles.

The produced electricity is subsequently harnessed to power the electric motor, propelling the vehicle forward. Remarkably, the sole byproduct of this energy conversion is water vapor, positioning hydrogen vehicles as exceptionally clean and environmentally friendly transportation options.

However, despite their potential ecological advantages, hydrogen vehicles face significant challenges hindering their widespread adoption.  Hydrogen vehicles

The dearth of hydrogen refueling infrastructure poses a substantial hurdle, limiting the practicality of these vehicles for everyday consumers. Additionally, concerns regarding the flammability of hydrogen gas have contributed to apprehension surrounding its use as a fuel source.

As of now, the disparity in adoption rates between electric vehicles and hydrogen vehicles is stark. The United States, for instance, boasts over 2 million electric vehicles on its roads, dwarfing the approximately 15,000 hydrogen-powered vehicles in operation. Nevertheless, ongoing advancements in technology, coupled with efforts to expand hydrogen infrastructure, may yet breathe new life into the hydrogen vehicle revolution, offering a compelling alternative in the quest for sustainable transportation.

Hydrogen vehicles represent a promising yet underutilized facet of the automotive landscape, offering a unique alternative to traditional gasoline-powered cars and electric vehicles

Coperion recycling innovation centre starts operations in Germany

The high-tech test centre for plastics recycling applications is located in Niederbiegen near Weingarten, Germany

Machinery producer Coperion has started operations at its plastics recycling innovation centre in Niederbiegen near Weingarten, southern Germany.  Hydrogen vehicles

The Recycling Innovation Centre is situated in the immediate vicinity of Coperion’s existing test centre for Bulk Solids Handling, expanding the company’s test lab capacities in Germany alone up to 5,000 square meters.

The high-tech centre allows Coperion’s customers to test every recycling process step, from material handling and feeding to extrusion, compounding, pelletising, material postprocessing, and deodorisation. Extensively equipped recycling systems are available that can be modified in myriad ways, depending upon the specific requirements of the recyclate to be produced.  Hydrogen vehicles

Machinery available include the Fluidlift ecodry for material flash drying during conveying; the Mix-a-Lot bulk solid mixer for creating pre-mixes including flakes or powders; and a ZS-B MEGAfeed side feeder, especially for extruding and compounding plastic recyclates with bulk densities starting as low as 20 kg/m³ at high throughputs.

“With this new Recycling Innovation Centre, we’re in a position where we can simulate the entire plastics recycling process,” said Massimo Serapioni, general manager of Coperion’s Recycling Business Unit. “Our customers can test the complete process, from mechanical pre-treatment of plastics in Herbold Meckesheim’s Test Centre up to compounding and pelletizing, prior to making the investment.

As a supplier of entire recycling systems, we are very proud to be able to offer our customers this enormous added value.”  Hydrogen vehicles


Coperion recycling innovation centre starts operations in Germany

Here is the extraordinary news: BYD, the Chinese giant, has started construction of the largest salt battery factory in the world, located in Xuzhou, between Beijing and Shanghai, with a monumental investment of 1.2 billion euros

This mammoth facility, known as the Gigafactory, represents a milestone in the evolution of battery technology, as it will be entirely dedicated to the production of sodium ion batteries.
The BYD Gigafactory, with a production capacity of 30 GWh per year, will be the largest factory in the world specializing in this type of technology, which is gradually emerging on the market.
Sodium ion batteries, commonly called “salt” batteries, are gaining ground and are already available for some energy storage systems, as well as used in the first electric cars. In the future, these batteries will represent a valid alternative to the more common lithium-ion batteries, offering slightly lower performance but at lower costs. Hydrogen vehicles
The construction of this new factory is the result of collaboration between BYD, its subsidiary Findreams Battery and the electric tricycle company Huaihai. Initially, the sodium ion batteries produced will be intended for scooters and light quadricycles, but the future goal is to extend their use to cars too.
BYD is not the only player to focus on this innovative technology; other Chinese companies such as Jiangsu Zoolnasm and Hina are also investing in Gigafactory to produce sodium batteries.
CATL, the world’s leading battery manufacturer, together with Northvolt, a leading European company, are preparing to launch their versions of sodium-ion batteries on the market.  Hydrogen vehicles
A clear signal that the salt battery sector is destined to become a focal point in the race for sustainability and energy efficiency.
Here is the extraordinary news: BYD, the Chinese giant, has started construction of the largest salt battery factory in the world, located in Xuzhou, between Beijing and Shanghai, with a monumental investment of 1.2 billion euros

BST India’s focus on consistent quality in flexible packaging 

BST India at Food Packaging and Innovations India Summit 2023

BST India, a leading manufacturer of quality assurance systems for printing, flexible packaging, and the web-based processing industry, showcased its potential in changing the future of food packaging at the recently concluded Food Packaging and Innovations India Summit 2023 in Mumbai. BST India supported the summit as a gold partner for the event.  Hydrogen vehicles

A presentation by Khushal Patel, director of sales and marketing, on ‘BST’s role in delivering consistent quality in flexible packaging’, delved into the company’s role in ensuring a standard of quality paramount in the flexible packaging industry.

The presentation explored how BST, integrated into the manufacturing process, can streamline operations, and enhance the overall quality of flexible packaging. It emphasized the importance of consistency in meeting industry standards, addressing challenges, and ultimately providing customers with products that surpass expectations.

“Our Gold Partnership and presentation at the Food Packaging & Innovations India Summit 2023 reflect our ongoing commitment to staying at the forefront of advancements in food packaging technology. By sharing our insights and experiences, we aim to contribute not only to our industry’s growth but also to the success of our valued partners and clients,” Patel said.  Hydrogen vehicles

The two-day summit from 1 November in Mumbai saw the active participation of companies such as Emami, Wagh Bakari Tea, Marico, Britannia, and many more. Their presence added depth to the discussions, fostering an environment of collaboration and knowledge exchange.

The multi-channel B2B in print and digital 17-year-old platform matches the industry’s growth trajectory. The Indian, South Asian, Southeast Asian, and Middle East packaging industries are looking beyond the resilience of the past three years. They are resuming capacity expansion and diversification, with high technology and automation in new plants and projects.  Hydrogen vehicles

As we present our 2024 publishing plan, India’s real GDP growth for the financial year ending 31 March 2024 will exceed 6%. The packaging industry growth will match the GDP growth in volume terms and surpass it by at least 3% in terms of nominal growth allowing for price inflation in energy, raw materials, consumables, and capital equipment.


BST India’s focus on consistent quality in flexible packaging 

Plastic waste – Svensk Plaståtervinning opens state-of-the-art facility for plastic recycling 25-11-2023

Hydrogen vehicles

Plastic waste – Svensk Plaståtervinning opens state-of-the-art facility for plastic recycling 25-11-2023

Plastic waste

Research at the University of Edinburgh could lead the charge toward UK rare element sustainability

A groundbreaking research initiative at the University of Edinburgh, spearheaded by Professor Louise Horsfall and her research group, holds the promise of revolutionizing the sustainability of rare elements in the UK. Focused on bio-based recycling, the project is centered around the utilization of engineered bacteria as a key component in recovering critical metals from end-of-life electric vehicle (EV) batteries.

In this innovative approach, bacteria are employed to extract metallic compounds, including cobalt, manganese, nickel, and lithium, from lithium-ion batteries. The goal is to establish a novel UK-based supply chain for rechargeable vehicle batteries by processing and repurposing these valuable elements. Professor Horsfall’s team is collaborating with the Industrial Biotechnology Innovation Centre (IBioIC) to advance the project to an industrial scale. Plastic waste

The FlexBio center within IBioIC facilitates the refinement of the process in a larger bioreactor, marking a significant step toward practical implementation.

To ensure the effectiveness of the engineered bacteria at scale, the Edinburgh Genome Foundry, situated at the University of Edinburgh, has been instrumental in the selection and modification of bacteria. The process involves introducing bacteria into battery leachate, the liquid remaining after initial processing, within a fermenter to simulate a natural biological reaction. During this reaction, the bacteria generate nano-sized particles of metallic compounds, resulting in a sediment that can be separated and filtered from the residual liquid. Tests are currently underway using material recovered from an EV battery previously employed in a Nissan Leaf.

This cutting-edge research is part of the broader Reuse and Recycling of Lithium-Ion Batteries (ReLiB) initiative, led by the University of Birmingham and financially supported by the Faraday Institution—the UK’s independent institute for electrochemical energy storage science. Plastic waste

With battery electric vehicles comprising 16.1% of total new car sales in the UK from January to June 2023, there is an escalating demand for initiatives that address supply chain pressures and manage waste batteries at the end of their lifespan. As reserves of metals used in batteries diminish, the approach of repurposing existing batteries becomes increasingly vital, especially given that a significant portion of metals in EV batteries is currently imported.

Professor Horsfall, who holds the position of Chair of Sustainable Biotechnology at the University of Edinburgh, emphasizes the importance of considering the fate of technology post-use, stating, “This project is about using cutting-edge sustainable biotechnology to find ways of tackling that challenge and, in turn, extract some of the most valuable metals that can go back into the sector at the early stages of vehicle production.”

Liz Fletcher, the Director of Business Engagement at IBioIC, underscores the dual value of the method being developed, stating, “No one wants to see lithium-ion batteries ending up in landfill, so it is important to explore different ways to repurpose and recycle them.”

She adds that the project could not only provide a petrochemical-free solution to waste but also contribute to reshoring the supply chain for rare metals and future battery manufacturing. Plastic waste

This multidimensional approach aligns with the imperative to make everyday products and services, such as cars and transport, more sustainable through the application of biotechnology.

Plastic waste

Svensk Plaståtervinning opens state-of-the-art facility for plastic recycling

Svensk Plaståtervinning, a Swedish a non-profit company co-owned by Swedish plastics, food and trade industry groups, inaugurated Site Zero, a sorting plant in Motala, Sweden. The plant features Tomra and Sutco equipment and aims to realise a circular economy for plastics by sorting Swedish plastic packaging waste into 12 fractions.

The plant is expected to process 42 metric tons of materials per hour and to recover 12 different types of plastics from mixed plastic packaging waste. This includes a variety of polyolefins, PET, PS, EPS, PVC, and more. The technology allows for purity levels of up to 98%. As of now the clean material fractions are then sent to recyclers in the EU. However, Site Zero is also planning to add recycling capacity to further process the main fractions locally in the future. Plastic waste

With Site Zero the three partners – Svensk Plaståtervinning, Tomra and Sutco – aim to close the loop on plastics and to enable zero waste, zero downcycling and zero emissions. “The plant we are seeing here today is the result of three partners working towards a common goal: closing the loop on plastic packaging.”, Oliver Lambertz, VP and Head of Operations and Feedstock Sourcing at Tomra Feedstock, concludes.


Plastic waste

Plastic waste management: Working towards a sustainable future

The European Commission is determined to address the challenge of plastic waste, with a comprehensive strategy and targets that will transform Europe’s plastic waste management and help the transition to a circular economy.

The exponential growth of plastic use is of global environmental concern. It has led to a surge in plastic waste that our current waste management systems are struggling to manage. Plastic waste

Effective plastic waste management has emerged as a significant challenge and opportunity for innovation that requires a comprehensive and sustainable approach. The European Commission told The Innovation Platform about its plans to manage and mitigate plastic waste, the associated challenges and its progress towards ambitious policies and targets

What is the European Commission currently doing to manage plastic waste? What are key policies and how are they being implemented?

Plastics are an important material in our economy and daily lives. However, they can have serious negative effects on the environment and human health. The EU is taking action to tackle plastic pollution and marine litter to accelerate the transition to a circular and resource-efficient plastics economy.  Plastic waste

The EU Plastics Strategy was adopted in January 2018 to transform the way plastic products are designed, produced, used, and recycled in the EU. We want to improve plastic waste recycling through better design, curbing plastic waste and littering, and driving investments and innovation in the value chain.


Plastic waste

From Northvolt comes the sodium ion battery

The intuition of a start up could soon mark a fundamental turning point in the world of electric cars. Northvolt, a Swedish company specializing in the production of batteries, has in fact developed a sodium ion battery, which does not contain lithium, cobalt or nickel, three metals that are not always so easily available and have unstable prices.
The use of sodium would have another fundamental advantage for the West, as it would minimize dependence on China for the purchase of the three elements, lithium in particular. Northvolt’s product is based on a hard carbon anode and a high-sodium “Prussian white” cathode. Due to the increased safety at high temperatures, the company would find it particularly interesting for energy storage in markets such as India, the Middle East and Africa. Plastic waste
This new sodium ion technology is less expensive and safer than the already known electric batteries; however, the amount of energy it produces is currently lower than that of lithium batteries, making it impossible, for the moment, to exploit sodium ion cells to power electric vehicles. The energy density achieved by Northvolt batteries currently reaches 160 watt hours per kilogram, while that of lithium batteries used in electric cars reaches 250/300 watt hours per kilogram. The first generation of sodium ion cells produced by Northvolt is in fact designed mainly for energy storage, while subsequent productions will offer opportunities for greater energy density to be used in electric vehicles.
Peter Carlsson, CEO and co-founder of Northvolt, said this new technology could be worth tens of billions of dollars as demand for electric batteries is set to increase over the next decade. Northvolt is currently the West’s safest hope against China, Korea and Japan, the three giants that hold a monopoly in the production of electric batteries.
However, sodium ion batteries are not an invention of the Swedish start-up; but the novelty is the lack of heavy metals. Plastic waste
In fact, even the Chinese Catl, the world’s largest battery manufacturer, has developed a similar technology, which however also incorporates nickel, cobalt and manganese, making the product much more expensive and less safe, as it could catch fire even at low temperatures .
Carlsson also added: «The world has placed great hopes in sodium ions and I am very pleased to say that we have developed a technology that will serve to accelerate the energy transition.
This is an important milestone for Northvolt’s market proposition, but technology like this is also critical to achieving global sustainability goals, making electrification more affordable, sustainable and accessible around the world.” Plastic waste
Plastic waste

Nanshan Fashion enters nylon field with Oerlikon

Partners committed to building the business and moving towards brand internationalisation.
At ITMA ASIA + CITME currently underway in Shanghai, Oerlikon Barmag has signed a strategic cooperation agreement with Shandong Nanshan Fashion Technology for a nylon POY+DTY project in Longkou, Shandong, China.The cooperation will see Oerlikon Barmag provide a completely integrated solution for nylon filament from chip drying and spinning to winding and texturing.Both parties will engage in cooperation based on mutual trust and long-term development considerations, with the target of high-end and sustainable nylon production.
Oerlikon Barmag will provide highly-differentiated nylon filament production solutions, integrate the advantages of Nanshan Fashion’s scientific and technological R&D resources and promote a joint brand for the nylon filament industry. Plastic waste
“For Oerlikon, this is the first time we have had the opportunity to work with an integrated textile manufacturer with a well-known brand in Dellma,” said Georg Stausberg, Oerlikon Polymer Processing Solutions CEO. “This should help us better understand  ongoing developments in the consumer market and the demands that they place on the manmade fibre industry. Nanshan Fashion is entering the field of manmade fibre production for the first time and we’ll support the venture with all our experience.”
Nanshan Fashion enters nylon field with Oerlikon

Hyosung, Tefron and Santoni partner to introduce sustainable activewear and seamless apparel

The world is witnessing a growing demand for sustainable and innovative solutions within the textile and fashion industry. To meet the evolving needs of consumers and the environment, Hyosung is collaborating with two of the leading global seamless companies, Tefron and Santoni, to introduce a new generation of sustainable sportswear and seamless apparel made with its certified and multi-functional yarns.

Hyosung, Tefron, and Santoni will unveil its collaborative product, which aims to set new standards in sustainable activewear and seamless clothing, at ISPO Munich this November 28-30 in Hall A1, Booth 335. Plastic waste

“The collaboration between Tefron, Hyosung, and Santoni presents a winning combination of certified eco-friendly raw materials and innovative production techniques,” said Susie Barak, Business Director, Tefron. “By integrating Tefron’s global one-stop shop expertise in seamless knitting with Hyosung’s creora® Bio-Based yarn, the partnership paves the way for innovative designs and styles that were previously challenging to achieve with traditional materials and manufacturing techniques.”

“We are delighted to team-up with two of the most powerful players in the seamless apparel market,” said Simon Whitmarsh-Knight, Hyosung Global Marketing Director -Textiles.

“The benefits of our collaboration are numerous and range from traceable, certified fibres, comfort, and performance to innovative design and versatility.” Plastic waste

To inspire seamless mills and fashion brands, Santoni will introduce its first-ever capsule collection of seamless materials made with Hyosung USDA, SGS-certified creora® Bio-Based elastane, RCS-certified 100% recycled creora® regen elastane, and soft-stretch creora® EasyFlex made on its world-class seamless knitting machines.

At the Santoni ISPO booth, the company will introduce its new SANTONI SM8-TOP2ST machine, a variant of its best-selling SANTONI SM8-TOP2V that allows for the creation of sculptured terry patterns and upgraded seamless designs. Santoni and Hyosung have partnered to create an environmentally friendly and innovative “capsule collection” made with Hyosung USDA, SGS-certified creora® Bio-Based elastane, which will be presented in the Hyosung booth.

The collection features terry knitting solutions to produce different padding effects based on higher protection and comfort. Plastic waste


Breaking Down Waste – Plastic Granulators and Recycling Machines Drive Sustainability Efforts

As awareness grows around the world about the environmental impact of plastic waste, companies and municipalities are ramping up sustainability efforts and looking for solutions.

As awareness grows around the world about the environmental impact of plastic waste, companies and municipalities are ramping up sustainability efforts and looking for solutions. Key to these efforts are technologies like plastic granulators and recycling machines that allow for the efficient breaking down and repurposing of plastic waste.

Plastic granulators are powerful machines that fragment and grind plastic scraps into smaller, uniform pieces called regrinds or granules. The resulting plastic granules provide the feedstock for recycling and can be remade into new plastic products. Common plastic resins that are recycled include PET, PP, HDPE and LDPE.  Plastic waste

“Plastic granulators are an essential first step in the recycling process,” said John Smith, president of ABC Recycling Machinery. “They enable us to take in scrap plastic that would otherwise be destined for landfills and grind it into a raw material that can be reborn as new plastic products. It’s a closed-loop system that creates less waste and uses fewer virgin resources.”

There are numerous types of plastic granulators available that are tailored to different plastic scrap streams and volumes. The granulation process reduces the size of plastic feeds such as bottles, containers, film, engineering plastic and other leftovers from manufacturing or post-consumer use.  Plastic waste

The granulator uses a cutting chamber and rotating knives to continuously slice the plastic until it is small enough to fall through a sized screen. The screen size and knife design can be configured based on the type of plastic stream input as well as the desired particle output size.

ABC Recycling Machinery offers heavy-duty granulators for large volume recycling as well as smaller bench-top granulators for converting scrap in a lab or small manufacturing setting. The granulators have safety mechanisms to prevent operator injury or contact with internal cutting components. Proper feeding rate, screen configuration, blade sharpness maintenance and stable ground anchoring are also critical to safe and efficient operation. Plastic waste


Breaking Down Waste - Plastic Granulators and Recycling Machines Drive Sustainability Efforts

Plastic waste

Plastics Recycling – Recycleye, Valorplast, and TotalEnergies use AI and computer vision to sort food-grade PP during mechanical recycling 24-11-2023

Plastics Recycling

Crude Oil Prices Trend

Crude Oil Prices Trend by Polyestertime

Crude Oil Prices Trend by Polyestertime

Adient will participate in the Barclays Global Automotive and Mobility Tech Conference

Adient, a renowned global force in automotive seating, is slated to actively participate in the upcoming Barclays Global Automotive and Mobility Tech Conference scheduled for Thursday, November 30, 2023. Jerome Dorlack, the Executive Vice President and Chief Financial Officer of Adient, will engage in a compelling fireside chat set to commence at 10:50 a.m. Eastern time. The event aims to provide valuable insights into Adient’s strategies, performance, and its perspective on the evolving automotive and mobility technology landscape. Plastics Recycling

The fireside chat, featuring Jerome Dorlack, will be accessible to a wider audience through a live webcast. This webcast can be conveniently accessed on the investor section of Adient’s official website at https://investors.adient.com/. Those interested in gaining firsthand knowledge and updates on Adient’s positioning, future initiatives, and market perspectives are encouraged to tune in to this engaging session.

Adient, with its extensive presence as a global leader in automotive seating, stands out with over 70,000 employees spread across 29 countries. The company boasts a network comprising more than 200 manufacturing and assembly plants worldwide. Operating at the forefront of automotive innovation, Adient is recognized for its ability to produce and deliver cutting-edge automotive seating solutions to all major Original Equipment Manufacturers (OEMs).  Plastics Recycling

From comprehensive seating systems to meticulously crafted individual components, Adient’s proficiency extends across every facet of the automotive seat manufacturing process. The company’s integrated, in-house capabilities empower it to shepherd products from the initial stages of research and design through to engineering and manufacturing. This seamless process culminates in the incorporation of Adient’s automotive seating solutions into millions of vehicles annually, a testament to the company’s commitment to excellence.

For those seeking a deeper understanding of Adient’s contributions to the automotive industry and its dedication to advancing seating technologies, additional information is available on the official Adient website at www.adient.com. The website serves as a comprehensive resource for exploring Adient’s corporate profile, innovations, and its enduring impact on the global automotive landscape.  Plastics Recycling

Plastics Recycling

Plastic has a greater value than we think

Plastic often receives negative attention, primarily due to the issue of plastic litter. However, it is important to acknowledge that plastic adds value to our lives, often in ways that we may not fully appreciate.

From the manufacturing of polymers used to produce preforms and eventually plastic products, plastic holds intrinsic value, and that value does not necessarily diminish once a plastic product has served its purpose.  Plastics Recycling

Safripol, a leading South African producer of polymer, recognises the importance of maximising the advantages of plastic through innovative solutions.

The company is dedicated to enhancing the recyclability of plastic products and promoting its use in durable applications, where it outperforms alternative materials.

The value of plastic to South Africa’s economy

The Department of Trade, Industry, and Competition (DTIC) estimates that there are approximately 1,800 companies in the plastics industry across the country, employing over 60,000 individuals.

The industry’s contribution to South Africa’s total GDP and manufacturing GDP is 2.3 % and 20 % respectively.  Plastics Recycling

These figures do not take into account the significant number of individuals who earn income from plastic-related activities, such as workers involved in the transportation of plastic products, as well as those in industries that rely on plastic components for their operations or the manufacturing of finished goods. In fact, nearly every sector and industry utilises or depends on plastic in some capacity.

The value of plastic to our environment

It is undeniably challenging to recognise the environmental benefits of plastic, particularly when we encounter plastic litter in our streets and parks. However, it is crucial to use plastic responsibly, dispose of it correctly, and promote recycling.

By recycling, we can establish a circular plastics economy. Instead of using additional virgin plastic, various recycling methods can be employed to generate new products that incorporate recycled plastic. This approach enables us to decrease energy consumption and mitigate greenhouse gas emissions.  Plastics Recycling


Plastics Recycling

First edition of Plastics Recycling Show Middle East and Africa

The inaugural edition of the Plastics Recycling Show Middle East and Africa (PRS MEA) unfolded from September 5th to 7th, 2023, at the Dubai World Trade Center, marking a significant milestone in advancing the plastics recycling landscape for the Middle East and Africa (MEA) market. Hosted in Dubai, a hub for rapid growth in recycling, the event brought together 98 exhibitors who showcased cutting-edge technologies and solutions geared towards promoting a circular and sustainable economy.

Organized by Media Fusion’s Managing Director, Taher Patrawala, in collaboration with Crain Communications, the PRS MEA aimed to foster a green future by highlighting the latest developments in plastics recycling from global leaders. The event served as a platform for the MEA market to witness the forefront of innovations in recycling solutions. Patrawala expressed his excitement about the region’s interest and emphasized Dubai’s central role in the dynamic recycling landscape. Plastics Recycling

Throughout the three-day event, attendees engaged with exhibitors who presented the latest trends and technologies in the plastics recycling industry, including insights into the bedding- and mattress-related recycling sector. The conference delved into crucial topics such as the current state and opportunities in the plastics recycling market, the collection and sorting landscape in MEA, chemical recycling’s impact on recyclable materials, and innovative solutions for sustainable food packaging to enhance circular economy practices.

A notable highlight was the Panel Discussion on ‘Transitioning to Circularity,’ where industry leaders, including Mustafa Bater from Coca-Cola Eurasia Middle East Operating Unit, emphasized their commitment to sustainability. The event also featured speakers from prominent organizations such as Unilever, PepsiCo, Veolia, Tetra Pak, Nestlé, Dow Chemical IMEA, and others. Plastics Recycling

Material focus sessions, a pivotal component of PRS conferences, included a Material Recycling Focus Session in Dubai. Ton Emans, President of Plastics Recyclers Europe, commended the success of the first PRS MEA edition, expressing enthusiasm about the collaboration between European recyclers’ expertise and the emerging recycling industry in the Middle East and Africa.

As a testament to its triumph, the PRS MEA drew thousands of visitors and international exhibitors, setting the stage for a follow-up event scheduled for September 2024. Matt Barber, reflecting on the success, underlined the event’s role in bringing together diverse industry stakeholders, making PRS MEA a crucial platform for advancing the global agenda of circular plastics.  Plastics Recycling

Plastics Recycling

Recycleye, Valorplast, and TotalEnergies use AI and computer vision to sort food-grade PP during mechanical recycling

Project OMNI – a research project directed by RecycleyeValorplast, and TotalEnergies that utilizes AI and machine learning to identify and separate food-grade polypropylene from household post-consumer waste – has led to ‘ground-breaking results’, the companies report.

Project OMNI is one of seven successful projects selected in Citeo’s call for projects in October 2020. It is said to have proven the viability of sorting food-grade polypropylene waste with AI, computer vision, and an ‘efficient’ decontamination process.

Using waste collected from five French locations by Valorplast, Recycleye built and trained an AI model; the AI and robotic sorting has apparently achieved a successful pick rate of 50% of the food-grade material and >95% purity. This material was further decontaminated on a semi-industrial pilot based on off-the-shelf mechanical recycling technologies, at which point TotalEnergies used it to produce recycled polypropylene for high-end packaging applications. Plastics Recycling

It is hoped that Project OMNI, the result of eighteen months of research, will facilitate ‘system-wide packaging changes’ and take steps towards circularity for polypropylene packaging.

“This project not only demonstrates how cutting-edge technology can improve material circularity, but also paves the way for a wider range of accessible applications for recycled polymers to serve our customers,” explained Nathalie Brunelle, senior vice president of Polymers at TotalEnergies. “It provides a concrete response to the challenge of managing end-of-life plastics, and fully supports our ambition of reaching 1 million tons of circular polymers.”

Victor Dewulf, CEO of Recycleye, continued: “We are extremely excited to see this successful application of our robust AI-powered sorting technology at a semi-industrial scale. This application opens the possibility of creating new markets for recycled plastics materials; ultimately changing the economics of recycling.”  Plastics Recycling


Recycleye, Valorplast, and TotalEnergies use AI and computer vision to sort food-grade PP during mechanical recycling

Clariant’s catalyst chosen for Shenghong’s new world-scale biodegradable plastics project

Clariant, a sustainability-focused specialty chemical company, today announced that it has been awarded a major contract by Jiangsu Shenghong Petrochemical Co., Ltd, to use Clariant’s SynDane 3142 LA catalyst for its new maleic anhydride (MA) production plant in Lianyungang, Jiangsu province, China, said HydrocarbonprocessingPlastics Recycling

With a production capacity of 200,000 tons per year, the new plant slated for start of production in 2025, will be one of the largest production plants for MA worldwide.

The plant in Lianyungang will produce maleic anhydride as an intermediate product for polybutylene adipate terephthalate (PBAT), which in turn will function as a base product for biodegradable plastic. Using the SynDane catalyst, Shenghong Petrochemical will be able to improve production efficiency and reduce power consumption, leading to annual energy savings of up to 24 million CNY.
Xaver Karsunke, Head of Clariant Specialty Catalysts, commented: “Sustainability is at the heart of our company strategy to drive change by partnering with our customers to develop sustainable, efficient solutions.

We are excited to support Shenghong in this ambitious and important project to address the plastic waste problem and maximize their energy savings during MA production with our innovative SynDane catalyst.”  Plastics Recycling


Clariant’s catalyst chosen for Shenghong’s new world-scale biodegradable plastics project

MAP tray on 100 percent rPET creating a fully closed-loop packaging system

Sustainable packaging solution for fresh protein market

MAP tray made from 100 percent rPET for a sustainable, high-performance packaging, Photo: Klöckner Pentaplast

Klöckner Pentaplast (KP) has taken a remarkable step towards sustainable packaging design for the European fresh protein market with “kp Elite”, the MAP modified atmosphere tray made from 100 percent recycled PET (rPET), creating a fully closed-loop packaging system for the industry. At the heart of the new packaging is the only fully recyclable, lightweight tray made from a modified atmosphere mono-material that has been certified as 100 percent recyclable by the cross-industry Recy-Class initiative. “kp Elite” can be seamlessly integrated into existing PET recycling systems, setting a new standard for the end-to-end recyclability of protein packaging.  Plastics Recycling

The combination of the MAP tray with the new “kp Zapora padless” tray and the certified recyclable “kp FlexiLid EH 145 R” barrier film opens up new possibilities for sustainability in the protein sector and creates a fully recyclable, ready-to-box MAP solution from a single source.

Cecilia Guardado, Marketing Director, Trays, at Klöckner Pentaplast, comments: “By communicating ‘kp Elite’s’ closed loop credentials, we’re aiming to drive the fresh protein market further than ever before. Packaging circularity is one of the biggest challenges in the protein market, but when combined with our KP Tray2Tray initiative, ‘kp Elite’ takes a vital step forward in reducing waste and promoting a more resource-efficient protein packaging ecosystem.”  Plastics Recycling


MAP tray on 100 percent rPET creating a fully closed-loop packaging system

XRG Technologies and BayoTech announce partnership

XRG Technologies, a leader in fired equipment engineering and design, and BayoTech, a leader in hydrogen production, transportation, and storage solutions, have announced a new partnership to design and build a proprietary high performance reforming furnace.

In this next generation reformer design, XRG will utilise their combustion expertise and CFD modelling capabilities to tailor heat flux profiles to BayoTech’s proprietary reactor design, enabling more hydrogen production with the same energy input.

BayoTech is accelerating the hydrogen revolution through greater accessibility, starting with its first production plant in Missouri, US.

This next generation reformer furnace will be incorporated into future facilities as BayoTech establishes a network of localised hydrogen production hubs in the US. Producing on a small scale with proprietary technology, BayoTech’s goal is to make reliable, cost-effective, low-carbon hydrogen accessible today.  Plastics Recycling

XRG Technologies is focused on combining diverse expertise with advanced simulation tools to develop innovative combustion and heat transfer solutions, enabling the industry to achieve energy efficiency and environmental stewardship goals.

Tom Korb, XRG’s VP of Technology and Commercial Development, elaborated: “XRG is pleased to partner with BayoTech in our shared vision of making the hydrogen economy a reality. This partnership is especially productive because both companies operate with an innovation and first-mover mindset.  Plastics Recycling


XRG Technologies and BayoTech announce partnership

Electric car – Researchers describe a more sustainable process to recycle biobased polycarbonates 23-11-2023

Plastics Recycling

Plastic recycled – Judge says Ottawa listing plastic items as toxic was ‘unreasonable and unconstitutional’ 21-11-2023

Plastic recycled

Crude Oil Prices Trend 

Crude Oil Prices Trend by Polyestertime

Crude Oil Prices Trend by Polyestertime

In the picturesque town of Frauenfeld, Switzerland, a groundbreaking development is underway at Müller Recycling AG, where the age-old practice of sorting PET beverage bottles is taking a leap into the future

With a legacy spanning over three decades, the company has been a stalwart in the recycling industry, witnessing the evolution of sorting systems since 2004. Now, on the cusp of 2024, the torchbearers of sustainability are ushering in a new era with the installation of the latest generation of sorting modules, propelled by the innovative prowess of artificial intelligence.

The avant-garde sorting system, a brainchild of Swiss engineering excellence by Borema Umwelttechnik AG, marks a paradigm shift by integrating artificial intelligence into the intricate dance of segregating PET bottles from extraneous materials while discerning subtle differences in color. The fundamental premise is clear: the more precise the separation, the higher the quality of the recycled PET that emerges from the amalgamated raw material.  Plastic recycled

In the quest for optimal efficiency and precision, Müller Recycling AG has harnessed the power of artificial intelligence, a first in their storied history. Augmenting the capabilities of the latest laser and near-infrared sensors, the AI-driven system brings an unprecedented level of accuracy to the sorting process. Astonishingly, the new system boasts an impressive throughput of up to 49 bottles per second, with a claimed accuracy rate of 99.96 percent. This leap in efficiency not only underscores the commitment to technological advancement but also positions Müller Recycling AG as a frontrunner in sustainable practices within the recycling landscape.  Plastic recycled

However, the journey towards environmental responsibility doesn’t stop at advanced sorting technologies. In a move to amplify the eco-friendliness of PET recycling, Müller Recycling AG has adorned its sorting hall and all other operational spaces with photovoltaic modules. This strategic implementation allows the facilities to harness the power of solar energy, contributing significantly to the electricity requirements of the cutting-edge PET sorting plant. By embracing renewable energy sources, Müller Recycling AG aligns itself with the broader goal of minimizing its carbon footprint and fostering a greener, more sustainable future.  Plastic recycled

As the hum of machinery and the meticulous dance of artificial intelligence converge in the sorting halls of Frauenfeld, Switzerland, Müller Recycling AG stands at the forefront of an environmental revolution. This convergence of cutting-edge technology and sustainable practices not only elevates the efficiency of PET recycling but also serves as a testament to the company’s unwavering commitment to environmental stewardship.

In an industry where every bottle sorted is a step towards a cleaner planet, Müller Recycling AG’s integration of artificial intelligence becomes more than a technological marvel—it becomes a beacon illuminating the path towards a circular economy where innovation and sustainability coalesce for a better tomorrow. Plastic recycled

For those intrigued by the intersection of technology and environmental responsibility, a visit to PET Recycling Schweiz and Müller Recycling AG promises a firsthand glimpse into the future of recycling—one where artificial intelligence is not just a tool but a catalyst for transformative change.

Plastic recycled

Electric cars, Polestar will be the first to fit rechargeable batteries in 10 minutes

In a groundbreaking development set to reshape the landscape of electric vehicles (EVs), Polestar, a prominent player in the zero-emission car realm under the Volvo umbrella, is poised to spearhead a transformative shift by integrating rechargeable batteries capable of achieving a remarkable 10-minute charging time. This paradigm-shifting innovation is expected to be implemented starting in 2027 and represents a pivotal stride in overcoming a longstanding impediment to the widespread adoption of electric cars—the prolonged wait times for recharging.  Plastic recycled

The realm of electric vehicles has undergone remarkable evolution since the introduction of zero-emission cars, with constant advancements pushing the boundaries of what was once deemed unattainable. Polestar, aligning with its commitment to cutting-edge technology, is set to usher in a new era with ultra-fast charging batteries that promise an unprecedented acceleration in charging speeds. Developed by the Israeli company StoreDot, a pioneer in ultra-fast charging battery technology, these batteries, known as XFC (Extreme Fast Charging), are designed to propel electric vehicles from a 10% charge to 80% in an astonishingly brief 10-minute timeframe.

The critical breakthrough offered by these batteries is poised to address one of the primary challenges hindering the widespread adoption of electric cars—the protracted waiting periods for recharging. StoreDot, having initially unveiled its XFC technology, embarked on collaborative efforts with 15 car manufacturers, with Volvo emerging as a privileged partner committed to contributing to the development of this groundbreaking innovation starting in 2024. Plastic recycled

The logical progression of this collaboration has led to Polestar becoming the inaugural automaker to officially incorporate StoreDot’s XFC batteries into its vehicles. An official agreement has been inked, solidifying the supply of these cutting-edge batteries for the first models expected to hit the market in 2027. This strategic move is anticipated to significantly mitigate the inconvenience associated with extended charging durations, positioning Polestar at the forefront of electric vehicle innovation.

Although the 2027 timeline may appear distant, the integration of StoreDot’s XFC batteries into production vehicles demands meticulous testing and seamless integration. StoreDot faces the challenge of ensuring the functionality of its batteries not only in controlled laboratory environments but also through rigorous real-world testing scenarios—a crucial litmus test for any automotive component.

The collaboration between Polestar and StoreDot underscores a shared commitment to addressing a persistent bottleneck in the electric vehicle landscape. StoreDot’s XFC batteries have already demonstrated remarkable endurance, sustaining rapid charging capabilities from 10% to 80% over 1,000 cycles without significant performance degradation. Plastic recycled

As the collaboration progresses, the technological synergy between the two entities aims to culminate in a revolutionary leap forward in electric vehicle charging, promising a future where the inconvenience of extended charging times becomes a relic of the past. StoreDot is concurrently exploring even more advanced battery technologies, with plans to introduce the XFC “100in3” in 2028—an endeavor that further solidifies the commitment to pushing the boundaries of electric vehicle technology.

Plastic recycled

LyondellBasell Collaborates on First Paving Project Using Recycled Plastic

Both LyondellBasell and Plastics Industry Association (PLASTICS) have goals to bring solutions to global challenges, such as helping eliminate and reducing plastic waste. Recently, both organizations came together on a project that has turned the equivalent of 71,000 plastic retail bags into the paving material of a repaved parking lot at the Cincinnati Technology Center in Ohio. This 2,885 square yard lot was made up of over 4,000 pounds of plastic waste and was the first installation of the New End Market Opportunities (NEMO) for Film Asphalt Project.  Plastic recycled

The NEMO Recycled PE project was launched in 2017 in Washington state and aims to better understand the different streams of polyethylene films and identify end-market opportunities for recycled films. The NEMO Asphalt Working Group initiated research on the use of recycled polyethylene (rPE) film blends in asphalt. With a focus on extending the life of plastic waste, this research project if successful, could be used in paving an even larger parking lot using 20,000 pounds of rPE or the equivalent of 1.5 million plastic grocery bags.

“Through this unique project, the LyondellBasell team demonstrates how all plastic can and should be used to its highest potential,” said PLASTICS’ President and CEO Tony Radoszewski.  Plastic recycled

The Cincinnati Technology center assists customers in meeting their business and sustainability goals by developing the most efficient and effective polymer materials required for product performance.  LyondellBasell partnered with Colas Solutions, the National Center for Asphalt Technology (NCAT), and Barrett Paving Materials Inc., to bring the project to life.

“LyondellBasell is taking a leadership position in sustainability, and this is one step of many that affirms our commitment in playing an active role,” said Chuck Holland, Site Manager of the Cincinnati Technology Center.


LyondellBasell Collaborates on First Paving Project Using Recycled Plastic

The Italian masterbatches hub is born

The emergence of the Italian masterbatches hub takes a significant stride as Koinos Capital completes the acquisition of Pavia-based Masterbatch, marking another strategic move following the takeover of Milanese Ultrabatch in July.

This development culminates in the formation of the Impact Formulators Group, positioning itself as a robust entity in the masterbatch formulation landscape.

With an eye on further expansion, additional operations are on the horizon for the burgeoning group. Plastic recycled

Masterbatch, established in 2003 and situated in Casei Gerola within the province of Pavia, stands as a key player in the field.

Led by founders Maurizio Garbelli and Stefano Battaini, the company focuses on the production of additive masterbatch primarily tailored for flame retardancy in construction and electrical cable sectors.

Additionally, Masterbatch manufactures nucleating concentrates and combibatches, seamlessly blending additives and colors.

The company’s 2,500 m2 facility in Casei Gerola boasts an annual production capacity of 1,700 tonnes, generating a turnover of 12.5 million euros, half of which is derived from international markets, notably Germany and France.  Plastic recycled

With an impressive average annual growth rate of 18%, Masterbatch has established itself as a force to be reckoned with in recent years.

The amalgamation of Masterbatch with Ultrabatch, which became part of the group just four months ago, propels Impact Formulators Group to a formidable 40 million euros in turnover. Plastic recycled

The ambitious vision includes doubling this figure by 2025 through a combination of organic growth strategies and strategic acquisitions within the sector.

Francesco Fumagalli, Founding Partner of Koinos Capital, emphasizes the tangible realization of their vision through the Masterbatch acquisition, solidifying the group’s position as an Italian industrial powerhouse with global aspirations.

Fumagalli lauds the collaboration with entrepreneurs Maurizio Garbelli and Stefano Battaini, underscoring their shared commitment to building a dynamic project by leveraging collective know-how, assets, networks, and commercial strength.

Looking ahead, Fumagalli reveals plans for additional operations in the sector, with a keen focus on color masterbatch and additives for PET, technopolymers, and polyolefins.

Ultrabatch, founded in 2003 in Castano Primo, Milan, specializes in formulating masterbatches for applications in the agricultural and industrial sectors.

Achieving a turnover of over 30 million euros last year, Ultrabatch maintains an annual growth rate of 10% since 2017, with 40% of its production distributed internationally, particularly in Europe and North Africa. Plastic recycled

The synergy between Ultrabatch and Masterbatch positions Impact Formulators Group as a formidable force in the ever-evolving masterbatch formulation industry.

The Italian masterbatches hub is born

Judge says Ottawa listing plastic items as toxic was ‘unreasonable and unconstitutional’

A Federal Court judge has ruled that a federal government decision to list plastic items as toxic was “unreasonable and unconstitutional.”

In a ruling released Thursday, Justice Angela Furlanetto wrote that the category of plastic manufactured items was too broad to be given a blanket toxicity label under federal law.

“There is no reasonable apprehension that all listed [plastic manufactured items] are harmful,” Furlanetto wrote. Plastic recycled

The case was brought forward by a group of major industrial players in plastics, including Dow Chemical, Imperial Oil and Nova Chemicals. They argued that Ottawa failed to demonstrate it had enough scientific evidence to justify the regulations.

Environment Minister Steven Guilbeault said the federal government is reviewing Thursday’s decision and is “strongly considering an appeal.”

“Canadians have been loud and clear that they want action to keep plastic out of our environment,” he said in a statement posted on X, formerly Twitter. “That’s what we’ll keep fighting for.”

The move to list plastic items as toxic was a key step that allowed Ottawa to proceed with a ban on some single-use plastic items. Those regulations will prohibit the sale of plastic checkout bags, cutlery, food service ware, stir sticks and straws in Canada after December 20.  Plastic recycled

Lindsay Beck, a lawyer who acted on behalf of environmental groups that intervened in the case, called Thursday’s decision “disappointing.”

“We know that plastic pollution is one of the major environmental crises of our time and this [ruling] really hampers the federal government’s ability to come to grips with this crisis,” Beck told CBC News.

Regulating waste management is generally a provincial responsibility. The government is only able to regulate substances for environmental protection if they are listed as toxic under the Canadian Environmental Protection Act.

But Furlanetto wrote that adding a broad category of plastics to the list went beyond the rules of the Act.  Plastic recycled

“Not every item within [the plastic manufactured items category] has the potential to create a reasonable apprehension of harm,” Furlanetto wrote.

The judge also wrote that Ottawa’s decision “poses a threat to the balance of federalism” because it didn’t restrict its regulations to those plastics that have “potential to cause harm to the environment.”

Judge says Ottawa listing plastic items as toxic was 'unreasonable and unconstitutional'

Covestro Forges Multiple Strategic Partnerships with Carmakers in China

Article-Covestro Forges Multiple Strategic Partnerships with Carmakers in China

The alliances target the use of polycarbonate in display, headlight, and sensor applications, and the deployment of polyurethane in auto interiors and batteries.

While economic growth in China may be decelarating, Covestro is accelerating its activities on the mainland through strategic partnerships in the automotive sector with several local players. Three such tie-ups were announced at the recent China International Import Expo (CIIE) in Shanghai.  Plastic recycled

First, Covestro formalized a strategic partnership aimed at advancing vehicle display technologies with Changzhou Talent-display Optronics & Technology (CTOT), which focuses on the enhanced application of specialized polycarbonate (PC) films to improve vehicle displays.

As automobile technology continues to progress in areas like integration, intelligence, electrification, and data connectivity, the importance of displays as an interface for human-vehicle interaction is growing. Manufacturers not only need to ensure the reliability of these displays but offer flexibility in design to accommodate the rapid changes in new-energy vehicles. In response, Covestro has teamed up with CTOT, a leading manufacturer of backlight modules, to explore tangible solutions. The partnership has already led to the release of Makrofol LM807, a high-quality PC light guide plate material designed for vehicle displa future mobility challenges  Plastic recycled

The second partnership unveiled at CIIE was the establishment of a joint laboratory with Chinese premium electric vehicle brand HiPhi to address key challenges in future mobility. The joint lab will mainly focus on the commercialization of low-carbon materials in future EV models and the establishment of relevant standards, as well as the development of next-generation smart-surface technologies and battery solutions. This initiative builds upon a cooperation agreement signed between the two companies at the CIIE last year.

As EVs becomes increasingly smarter, headlights present new opportunities beyond illumination, according to Covestro. The headlight lenses on the HiPhi Y, for example, are transformed into a projector to display signs and patterns in front of the vehicle, creating an interactive interface with pedestrians and other vehicles. Covestro’s high optical performance Makrolon AL offers the needed dimensional stability, UV resistance, and transparency required for this application.  Plastic recycled

Further, in the HiPhi Y’s LiDAR lenses, the Makrolon AX portfolio demonstrates superior performance compared to glass, including infrared transmittance, the ability to shape curved surfaces, and impact resistance against stone chips. The materials can also endure the working environment of LiDAR at temperatures reaching 115°C for extended periods.

Polyurethane on the inside

Covestro’s third initiative announced at CIIE was a global partnership with Chinese automotive trim company Xinquan Automotive to strengthen the latter’s business in China and support Xinquan’s expansion into North America, Europe, and ASEAN countries. The material focus will be on polyurethane (PU), initially for automotive interior applications, such as instrument panels, door panels, and center armrests. Expanding on the technical collaboration, Covestro and Xinquan will also harness Covestro’s global R&D capabilities to develop low-carbon PU solutions for vehicle interiors by using partially bio-based raw materials.  Plastic recycled

The cooperation also extends to the development of PU applications for electric vehicle battery packs.


Covestro Forges Multiple Strategic Partnerships with Carmakers in China

Verkor marks new milestone in future of sustainable mobility, laying the foundation stone of its Gigafactory

Verkor, joined by the Prime Minister and other members of Government, laid the foundation stone of its Gigafactory aimed to produce low carbon, high-performance electric batteries for sustainable mobility. An event made possible by the European Commission’s validation of French support of 659 million euros for Verkor’s development activities and direct and indirect support for the project of up to €600 million from the European Investment Bank, subject to final approval, as part of the €2 billion financing package announced by Verkor last September.In the presence of Prime Minister Elisabeth Borne, Minister of Energy Transition Agnès Pannier-Runacher, Delegate Minister of Housing and President of the Urban Community of Dunkirk, Patrice Vergriete, President of the Hauts-de-France region Xavier Bertrand and Ambroise Fayolle, Vice-President of the EIB, Verkor officially inaugurated the construction of the Gigafactory located in Dunkirk. The event highlights Verkor’s determination to advance quickly and concretely develop a European, resilient and sustainable battery value chain.  Plastic recycled

Verkor’s Gigafactory will be operational by 2025 with an initial production capacity of 16GWh/year. Located in the Port of Dunkirk, it will contribute to the creation of approximately 1200 jobs and 3000 indirect jobs. The industrial project positions Verkor as a major partner for mobility and stationary storage players, developing high-performance, low-carbon batteries in Europe, in favour of the energy transition.

The construction of this European production site for high-density, high-performance, low carbon batteries for electric vehicles and stationary storage is made possible through the financial support of multiple stakeholders.

Last September, Verkor announced the company had secured 2 billion euros in funding through a Series-C of €850m, direct and indirect banking support for the project of up to €600m from the European Investment Bank (subject to final approval), and national subsidies of approximately €650m recently approved by the European Commission in the context of the state aid framework for research and development and innovation (RDI framework).  Plastic recycled


Verkor marks new milestone in future of sustainable mobility, laying the foundation stone of its Gigafactory

Blue hydrogen – Semi-solid state batteries: a better alternative to solid state ones? 20-11-2023

Plastic recycled

Recycled content – Johnson Matthey demonstrates new recycling technology for fuel-cell and electrolyzer materials 17-11-2023

recycled content

Crude Oil Prices Trend 

Crude Oil Prices Trend by Polyestertime

Crude Oil Prices Trend by Polyestertime

Beverage industry calls for priority access to recycled content

Seeks to anchor the right to recycled content in proposed PPWR

With the plenary vote on the proposed EU Packaging and Packaging Waste Regulation (PPWR) just a short week away, the European natural mineral water and soft drink industries are urging MEPs to ensure a priority access to recycled content is part of the proposal.

In Sweden and Slovakia, two countries that have already implemented priority access for the beverage industry, the measure has proven to be crucial to securing a consistent supply of recycled content, say deposit and return system (DRS) operators from those countries. It promotes closed-loop recycling where technically possible, and encourages other sectors to invest in the collection and recycling of their own products –  ultimately contributing to a more circular economy.  recycled content

“We see the true value of having a priority access to recycled content enshrined within the Swedish DRS,” Anna-Karin Fondberg, managing director at Sveriges Bryggerier (the Swedish Brewers). With this priority access, also our SMEs are in a position to make the necessary investments in recycled content to achieve their recycled content obligations and circularity ambitions.”

‘’A priority access right to recycled material is a fundamental component of the Slovak DRS,” added Lucia Morvai, director of external affairs and communications of the Slovak DRS Administrator.

“This is absolutely necessary to enable a circular economy. SMEs, in particular, have a lot to gain from it, because they have the possibility to comply with the EU’s recycled content obligations whilst remaining competitive.’’  recycled content

Considerable investments are being made by the European natural mineral waters and soft drinks industries, among others in lightweighting solutions, recyclability and efficient collection systems, such as Deposit and Return Systems. These investments are vital in order to meet the EU mandatory recycled content targets. However, under the current EU regimes, only recycled PET is authorised for use in food contact applications. It is, therefore, imperative for beverage manufacturers to secure a stable supply of rPET if they are to be able to comply with the targets set by the EU.

For this reason, the downcycling of PET beverage bottles should be discouraged, says the industry. According to a 2022 study by Eunomia and Zero Waste Europe, around 68% of the PET beverage bottles collected for recycling are downcycled into other PET product applications, such as polyester textiles, automobiles or toys, rather than collected for bottle-to-bottle recycling. This breaks the recycling loop and restricts the overall rPET supply.  recycled content

recycled content

Sweden opens state-of-the-art plant for sorting plastics for recycling

A new plastics sorting facility inaugurated in Sweden on Wednesday is being billed as the largest of its kind, and one designed to double the amount of plastic packaging materials being recycled in the Nordic country.

A new plastics sorting facility inaugurated in Sweden on Wednesday is being billed as the largest of its kind, and one designed to double the amount of plastic packaging materials being recycled in the Nordic country.  recycled content

Thanks to cutting-edge technology, the Site Zero plant in the central city of Motala can sort up to 200,000 tons of plastic packaging a year, according to Sweden Plastic Recycling, a non-profit company co-owned by Swedish plastics, food and trade industry groups. The company says that’s more than any other sorting facility in the world.

A unique feature of Site Zero is that it can separate up to 12 different types of plastic.

An old plant at the same location could only sort 5 types of plastic, which meant that only 47% of the material was sent on for recycling and the rest was incinerated, said Mattias Philipsson, CEO of Sweden Plastic Recycling.

The new plant will be able to send up to 95% of the packaging for recycling, minimizing the amount that is incinerated. Burning plastic has a climate impact by adding greenhouse gasses to the atmosphere.

The world produces more than 430 million tons of plastic annually, two-thirds of which are short-lived products that soon become waste, filling the ocean and, often, working their way into the human food chain, the U.N. Environment Program said in an April report.

Plastic waste produced globally is set to triple by 2060, with about half ending up in landfill and under one-fifth recycled.  recycled content

Efforts to create a landmark treaty to end global plastic pollution are taking place in Kenya’s capital, Nairobi, where nations, petrochemical companies, environmentalists and others affected by the pollution are gathered for U.N.-backed negotiations.

At Site Zero, the roar of the machines is deafening as conveyor belts carry 40 tons per hour of mixed plastic waste through the entrails of the factory. Gradually, as the chocolate wrappers, plastic bags, yogurt containers or white polystyrene progress across the 60,000 square-meter complex, it’s broken down, separated by size and sorted in a fully automated process reliant on infrared cameras.  recycled content


recycled content

Indorama Ventures reports stable quarterly earnings; management focused on bolstering performance in challenging environment 

Indorama Ventures Public Company Limited (IVL), a global sustainable chemical producer, reported stable third-quarter earnings as the company’s management focuses on conserving cash and improving competitiveness to bolster performance in a continued period of weakness in the global chemical industry.

Indorama Ventures achieved EBITDA of $324 million in 3Q23, an increase of 1% QoQ and a decline of 37% YoY, impacted by a weak economic environment, geopolitical tensions, and continued post-pandemic disruptions in global markets.  recycled content

Sales volumes dropped 5% from a year ago to 3.6 million tons as China recovers from the pandemic more slowly than expected and an extended period of destocking in the manufacturing and chemical sectors continues to normalize from unprecedented levels last year. Management continues to focus on conserving cash, realising efficiency improvements, and optimising the company’s operational footprint to boost profitability. These efforts resulted in positive operating cash flow of US$410 million in the quarter, positive free cash flow of $79 million year to date, and room for further reductions in working capital going forward. The company’s AA- rating was maintained by TRIS in the quarter, with a stable outlook. The company expects the operating environment to improve in 2024 as customer destocking continues to ease across all three of Indorama Ventures’ segments. The ramp up of PET and fibers expansion projects operations in India and the U.S. will also contribute to increased volumes.  recycled content

Combined PET posted EBITDA of $146 million, a 25% decline QoQ, amid historically low benchmark PET margins, increased feedstock prices in Western markets, and lingering effects of destocking. Integrated Oxides and Derivatives (IOD) segment posted a 27% rise in EBITDA to $119 million QoQ, supported by strong MTBE margins in the Integrated Intermediates business. The Integrated Downstream portfolio’s profitability was impacted by destocking, inflationary pressures, and margin pressure from imports. Fibers segment achieved a 140% increase in EBITDA to $48 million QoQ as Lifestyle volumes grew in key markets in Asia, and the Mobility and Hygiene verticals benefited from management’s focus on optimizing operations and refocusing the organization.

Mr DK Agarwal, Deputy Group CEO of Indorama Ventures, said, “I am pleased to report that we are making meaningful progress on the management actions that I mentioned in the last quarter.  recycled content

In the short term, these are resulting in positive free cash flow generation, while in medium term we continue to defend aggressively our first-quartile cost position to emerge with enhanced profitability post the return to normalization in 2024 from the challenging operating environment that the industry faces. I must admit it is surprising that global inventory levels have yet to reach optimum levels, including our own, as the value chains in our segments de-leverage against higher operating costs, especially in Europe and in general from steep interest costs that we feel may stay at peak levels for longer. We are adjusting our global footprint to meet the anticipated supply/demand environment and trade flows to ensure we continue to provide our customers with competitive and reliable offerings and are aligned in providing best-in-class sustainable solutions.”

Visit Indorama


recycled content

“Navigating the Path to a Circular Economy: IDTechEx Explores Sustainable Polymer Technologies”

In the global pursuit of a circular economy, governments, brands, materials suppliers, and the public are rallying to address the escalating threat posed by surging plastic consumption. The Organisation for Economic Co-operation and Development (OECD) predicts a doubling of global plastic consumption by 2050, accentuating the urgency for sustainable polymer solutions. IDTechEx, a leading research firm, sheds light on the pivotal role played by various stakeholders in propelling the polymer industry towards greater sustainability.  recycled content

Four influential groups are steering the drive for sustainable polymers: governments, retailers or brands, non-governmental organizations (NGOs), and the public. Regulatory measures, investments, pledges, and consumer behavior are all contributing factors, with the enforcement and monitoring of regulations likely to wield the most significant influence. A notable development occurred in 2023, as representatives from 180 countries gathered in Paris to discuss a treaty aimed at curbing global plastic pollution.

Addressing the call for sustainable plastics necessitates innovations across the entire polymer value chain, encompassing chemical suppliers, end-users, and recyclers. IDTechEx delves into these innovations, exploring alternative feedstocks such as carbon dioxide (CO2) and biobased inputs, alongside production processes like white biotechnology. The application of these sustainable polymers, especially in high-demand sectors like packaging, is crucial. Furthermore, the end-of-life recycling, through both established mechanical processes and emerging advanced recycling methods, plays a vital role in establishing a truly circular economy.  recycled content

The transition to sustainable polymers encounters various technical and economic challenges, contingent on factors like product properties, the “green premium,” and the ability to decouple pricing from traditional raw materials. IDTechEx delves into the technological developments, challenges, and outlook for innovations spanning the entire polymer value chain.

Biobased feedstocks, including carbon dioxide, bacteria, and others, take center stage in the quest for sustainability. Carbon capture and utilization technologies hold the promise of transforming polymer production into a carbon-negative industry. While challenges persist, government support, investments, and technological advancements signal a positive trajectory.  recycled content

The bioplastic industry, driven by demand for sustainable polymers, is expected to grow at a 10.1% compound annual growth rate over the next decade. Notable advancements include the production of biodegradable water bottles using polyhydroxyalkanoates (PHAs), showcasing the industry’s potential to compete with traditional plastics.

White biotechnology emerges as a promising area for converting biobased feedstocks into commodity chemicals and materials. Though faced with historical challenges, advancements in synthetic biology provide new possibilities for industrial production using living cell factories.

The application of sustainable polymers in end markets, particularly packaging, presents unique challenges. The sustainable packaging market is evolving rapidly, with increasing regulations on single-use plastics driving the adoption of recycled and biobased materials.

Chemical recycling, despite controversies surrounding its environmental impact, offers a valuable pathway for enhancing the value of end-of-life plastics. With major players entering the market, the mid-term growth of chemical recycling is inevitable, though subject to ongoing scrutiny.  recycled content

In conclusion, the outlook for sustainable polymer technologies is optimistic, driven by the imperative to address plastic consumption and stringent government regulations. As sustainability becomes a corporate and consumer priority, the plastic circular economy is poised to gain momentum, albeit with challenges to overcome in transforming the petrochemical market. IDTechEx remains vigilant, closely monitoring developments in this dynamic landscape.

"Navigating the Path to a Circular Economy: IDTechEx Explores Sustainable Polymer Technologies"

NILIT Scores For Sustainability With Award Winning Partnerships

Advancing apparel sustainability requires partnerships and collaborations that redefine the traditional structure of the global supply chain. Companies across the spectrum from fiber to finished product and through to the end user must work together to create apparel that delivers on consumer demands for performance, longevity, comfort, and style while being better for the planet throughout and after useful life.  recycled content

“Partnership is integral to creating the sustainable apparel that significantly reduces our industry’s burden on the environment,” says Michelle Lea, NILIT’s VP global marketing for the SENSIL® portfolio of sustainable premium Nylon 6.6 performance products. “Over the past two years, we have introduced multiple new SENSIL® technologies to target apparel’s sustainability concerns. Our award-winning collaborations with mills, brands, and retailers are bringing these innovations to life and presenting them to a very receptive performance apparel market.”

Through collaboration with mill partners, NILIT is proud to have been selected for three ISPO Textrends Awards for Fall/Winter 25/26:

Second Layer Top 10 with Pontetorto‘s 9154/M/Bio fabric created with biodegradable SENSIL® BioCare  recycled content

Street Sports Selection with Cifra’s B90MF fabric designed with SENSIL® ByNature, the industry first premium Nylon 6.6 that replaces fossil feedstocks with reclaimed biogas made from recyclyed organic waste

Base Layer Selection with Eusebio’s Kimmy Bio fabric with biodegradable SENSIL® BioCare

At ISPO Munich in Stand A1.444, NILIT will also showcase the partnership with Jack Wolfskin that resulted in the new Pioneers Collection featuring SENSIL® ByNature. Known for designs that optimize style, function, and sustainability, Jack Wolfskin’s Pioneers Collection seamlessly combines the latest sustainable SENSIL® Nylon 6.6 technology with minimalist design to create a responsible and transparently made range of exceptional apparel built for urban and outdoor pursuits.  recycled content


NILIT Scores For Sustainability With Award Winning Partnerships

Pan Era, Milliken tie up on Indonesian PP recycling

Indonesian polyolefins recycler Pan Era has today signed an initial agreement with US manufacturing company Milliken to recycle polypropylene (rPP) in Indonesia.

Pan Era will provide the rPP while Milliken Chemical, the subdivision of the company specialising in additives, will enhance the rPP with additives and handle the manufacturing of finished goods. The partnership will allow the Indonesian recycler to access more customers in the domestic Indonesian markets and within the region. The rPP produced will be under Pan Era’s patented recycled polyolefin brand Eterlene.

The rPP will initially be used to produce thin wall plastic packaging for non-food contact applications. Pan Era will supply approximately 8,000 t/yr of rPP, based on existing Indonesian recycling rates of rPP, according to Milliken’s plastic additives, chemical division country manager Daniel Tanzil. Using rPP in food-contact applications is currently tricky, given a lack of standardised regulations within the region.  recycled content

The melt flow index (MFI) of rPP produced in Indonesia is typically below 30 g/10 minutes. The collaboration between the two companies has produced three new grades of rPP, all with an MFI of 40 g/10 minutes or higher. A higher MFI diversifies the range of rPP applications from thin wall packaging and can extend to the automotive, electronics and industrial sectors, Tanzil said.

The new grades of rPP could be commercially available to customers within the next two months, but this could be prolonged as prospective customers will have differing requirements for the specifications of grades of rPP needed for their products, Milliken said.  recycled content

Milliken has begun marketing the product to global brand owners such as Procter and Gamble and Unilever as well as local companies such as Wings, Tanzil said.


Pan Era, Milliken tie up on Indonesian PP recycling

Johnson Matthey demonstrates new recycling technology for fuel-cell and electrolyzer materials

Johnson Matthey plc (JM; London) announced the successful lab scale demonstration of its new HyRefine technology for recycling hydrogen fuel cell and electrolyser materials. While there are established routes to recycle the platinum group metals (PGMs), often the ionomer isn’t recovered. We believe this is the first ever demonstration of circularity for the PGMs and valuable ionomer together.

JM researchers have proven at lab scale that both the PGMs and the ionomer can be recovered and recycled into new catalyst coated membranes – the performance-defining components at the heart of hydrogen fuel cells and electrolysers.

Separate experiments have confirmed that the recycled PGM catalysts match the performance of fresh material.  recycled content

As the hydrogen economy takes off, embedding circularity is critical to conserve precious resources and minimise the environmental impact of manufacturing new hydrogen technologies.

Using a purely chemical process, JM’s HyRefine technology offers efficiency and sustainability benefits compared to conventional PGM refining.

Processing only fuel cell and electrolyser material, JM’s bespoke HyRefine technology provides additional traceability of the critical PGMs. The output from this process would be 100% secondary (recycled).

Secondary metal has up to a 98% lower carbon footprint than primary (mined) metal, offering significant sustainability benefits[1]recycled content

The PGM can then be seamlessly integrated into JM’s PGM catalyst manufacturing and subsequent CCM manufacturing.

Following successful 5 litre lab scale demonstrations, JM is now scaling up this technology to run 50 litre pilot trials in its facility in Brimsdown, UK.

Alastair Judge, JM’s Chief Executive, Platinum Group Metals Services, said: “This demonstration of our HyRefine technology is a key step on our path to providing a circular service for our fuel cells and electrolyser customers in the future.


Recycled car interiors – New technique can capture or reuse CO2 as a chemical source for the production of sustainable plastic 16-11-2023

recycled content

Chemical recycling – Pyrowave introduces nanopurification technology for plastics 15-11-2023

Chemical recycling

The Chinese brick is crumbling

As of the first 10 months of 2023, the foundations of China’s real estate sector are visibly cracking, with a 6.8% year-on-year decline in property sales, adding to the preceding 7.5% downturn observed from January to September. This data, emanating from the National Statistics Office, serves as a glaring indicator of the deep-seated crisis gripping the Chinese real estate market. Concurrently, investments in the construction sector have hit the brakes, experiencing a notable 9.3% decrease following the 9.1% contraction in the preceding January-September period. Chemical recycling

A closer look at specific metrics reveals a concerning trend. New construction initiations, measured in square footage, have plummeted by 23.2% on an annual basis, mirroring the 23.4% slump witnessed in the first nine months of the year. Additionally, the funds amassed by real estate developers have seen a precipitous 11% decline, building upon the 13.5% contraction recorded in the initial nine months of the year.

These alarming figures find resonance within the broader context of investments in fixed assets, which, contrary to expectations, have only grown by a modest 2.9% in the first 10 months of the year.  Chemical recycling

The total, amounting to 41,940 billion yuan (equivalent to nearly 5,830 billion dollars), falls short of anticipated growth, which was pegged at 3.1%. This downturn in real estate activity is emblematic of the economic turbulence faced by China, exacerbated by the crises befalling major players in the industry such as Evergrande and Country Garden. These industry giants, grappling with insurmountable debt and teetering on the brink of collapse, are contributing significantly to the erosion of the dragon’s economic prowess. The reverberations of this downturn extend beyond the realm of real estate, casting a shadow on China’s overall economic landscape.

The Chinese brick is crumbling

Crude Oil Prices Trend 

Crude Oil Prices Trend by Polyestertime

Crude Oil Prices Trend by Polyestertime

Pyrowave introduces nanopurification technology for plastics

A short-loop chemical recycling process to remove toxic additives and contaminants in plastics

At the 2nd ICIS Recycled Polymers conference held last week in Chicago, Pyrowave introduced a new nanopurification technology that specifically addresses the problem of contaminants in plastic waste and in pyrolysis oil. Contamination is an issue that has held back efforts to scale plastic recycling, precisely because of  the inability to secure feedstock compatible with level of purity required in end applications. In fact, a United Nations report recently highlighted the challenges of handling hazardous chemicals present in plastics – additives and contaminants that represent major concerns to human health and the environment.  Chemical recycling

According to Pyrowave, its nanopurification technology operates at the molecular level to remove contaminants from polymers with perfect control on purified resins, offering a plastic waste pre-treatment to purify the resins that can be used in advanced recycling methods, or directly into final applications. The technology  debottlenecks the access to plastic feedstock, by standardising the material upstream to be compliant with most advanced recycling process, including its own microwave depolymerization process.

Pyrowave has successfully demonstrated the technology by decontaminating polymers and supplying high-quality recycled plastics to industries requiring strict compliance, including food-contact applications.

For advanced recyclers, the ability to pre-treat the feedstock results in a higher quality pyrolysis oil, which in turn, means that the threshold of recycled oil added into steam crackers can be raised.  Chemical recycling

The company was inspired by the purification technologies applied in the pharmaceutical industry. The methodology takes advantage of the large difference in size and solubility disparity between polymers and most additives found in the compounds, using advanced nanofiltration membranes to separate the contaminants out. The patent-pending technology enables simultaneous removal of various contaminants – something not possible when using conventional dissolution methods –  all while maintaining meticulous control over the endpoint.


Chemical recycling

Cosmo First results expect worst to be behind

Cosmo First declared its financial results for the quarter ended June 2023 on 10 August. The results for the quarter would have been better by Rs 20-crore but for the non-repetitive inventory loss arising from the sharp drop in prices of raw materials towards the quarter end.  Chemical recycling

During the quarter, the BOPP demand has started picking up and the demand-supply balance should get restored in the coming quarter(s). In the case of BOPET, where the supply is far in excess of demand, it will take many more quarters for the supply-demand gap to bridge. Margins are therefore likely to remain under pressure with little downside risk.

The export markets showed signs of improvement with better specialty sales. Cosmo with over two third of its revenue coming from BOPP speciality films could withstand the margin pressure better than the industry.  Chemical recycling

“We continue to build our specialty films portfolio by adding speciality polyester films, including shrink labels and sun shield films which would further strengthen our overall margins and also the ability to withstand margin pressures if any in the future,” the company said.

The company’s Petcare vertical Zigly continues to grow rapidly and clocked monthly revenue (GMV) with a run rate revenue of Rs 3-crore on the back of expanding retail footprints, innovative sales promotion, and increasing online presence. The acquisition of Petsy, an online venture in the Petcare space, is complete and would further accelerate the growth of the Petcare vertical.  Chemical recycling

The speciality chemical subsidiary is set to launch newer adhesives in H2, FY24.

Pankaj Poddar, Group CEO, Cosmo First, said “The company is working on multiple growth drivers including speciality BOPET films, sun shield film, rigid packaging, specialty chemicals, petcare, etc.


Chemical recycling

The joint ventures intend to issue a final investment decision in 2023, with construction beginning that year

Production is production to commence in late 2025 or early 2026. Between the two facilities, over 125 new jobs would be created if the project moves forward.

“With the establishment of this JV, LG Chem will not only procure production capacities for highly pure lactic acid needed for commercial-scale PLA production, but will also be able to apply biomaterials in the development of various high-value-added products. Based on eco-friendly materials, which is an axis for new growth engines, we will respond to the rapidly changing market and customers, while becoming a market leader, ” said Hak Cheol Shin, CEO of LG Chem, in a statement.  Chemical recycling


The joint ventures intend to issue a final investment decision in 2023, with construction beginning that year

In China, even finance is communist: Xi is the central banker (but the crisis does not pass)

In China, the once-unchallenged trajectory of economic prosperity is now met with unprecedented challenges, sending shockwaves through all levels of society

Unlike the West, which has grown accustomed to periodic crises, China has been relatively immune for several decades. However, the current state of Beijing’s economy is causing widespread concern, marked by a significant slowdown in economic growth, a looming real estate bubble, and the staggering youth unemployment exacerbated by Xi Jinping’s stringent measures on the hi-tech sector.  Chemical recycling

The severity of the situation is not lost on the Communist Party, whose social legitimacy historically hinged on meeting the needs of the people. For decades, a tacit agreement existed: citizens traded some freedoms for steadily improving living conditions. Now, this implicit contract is unraveling, and the Party, under mounting pressure from its populace, is grappling with how to regain control.

The recent Central Financial Work Conference, held every five years to outline financial objectives, provided a glimpse into Xi’s vision. In his central speech, Xi unveiled a new economic model emphasizing the “rejuvenation” of the country through “socialism with Chinese characteristics for the new era.” A central tenet of this vision involves the Communist Party reclaiming a pivotal role in the entire economy.

Market forces, once allowed a degree of freedom, are now to be tightly controlled, if not outright impeded.  Chemical recycling

This shift had already manifested in various measures, such as the drastic downsizing of Alibaba’s Jack Ma, the crackdown on internet giants, dismantling of online higher education sectors, and restrictions imposed on private businesses, which constitute 80% of the nation’s employment. The presence of party cells in companies, even foreign ones, reflects the growing intrusion of political influence. Foreign consultancy firms have faced ostracism and repression, while security and anti-espionage laws grant unprecedented powers to Chinese authorities.

In a departure from the previous focus on economic development, the central theme now is security – both geopolitical and domestic.

The goal is to create an economy and technology that are less reliant on international relations and foreign exchanges.  Chemical recycling

Against this backdrop, the latest move is a profound transformation of the financial sector. The establishment of a Central Financial Commission, announced during the Conference, consolidates significant powers directly under the Communist Party’s purview.

This Commission will oversee the central bank, the regulatory commission for financial activities, and stock exchange authorities, essentially placing the entire Chinese financial sector, valued at over 60 trillion dollars, under the direct control of the Chinese Communist Party. As the economic landscape undergoes this tectonic shift, the world watches with anticipation, wondering whether these measures will steer China towards stability or introduce a new chapter of uncertainties.  Chemical recycling

Chemical recycling

Hyundai, the electric revolution of the world’s largest car factory

Hyundai, at the forefront of the global automotive industry, is gearing up for an electric revolution that promises to reshape the landscape of the world’s largest car factory

The visionary words of Ju-yung Chung, Hyundai’s founder, echoing the conviction that “Korean cars will conquer the world,” laid the foundation for a remarkable journey.

Now, Hyundai Motor Group, currently holding the esteemed third place among car manufacturers globally, is poised to dominate the electric vehicle (EV) market by expanding the production capacity of its colossal Ulsan plant.

The Ulsan plant, already a colossus in the automotive realm, assembled a staggering 1.4 million cars in 2022 alone, dwarfing even Volkswagen’s facility in Wolfsburg, Germany, which can manage a maximum of 800,000 cars annually. Chemical recycling

In an ambitious move, Hyundai plans to carve out a dedicated production line within this automotive behemoth, earmarking a substantial 548 thousand square meters for the construction of a cutting-edge electric car plant.

The symbolic laying of the first stone on November 13 marked the initiation of this transformative endeavor, attended by key figures such as Euisun Chung, executive president of Hyundai Motor Group, Jaehoon Chang, president and CEO of Hyundai Motor Company, along with local officials.

The emphasis of this new facility extends beyond mere production capacity augmentation. Hyundai is actively seeking to integrate revolutionary production technologies to redefine the manufacturing process for electric vehicles.

While details remain undisclosed, there are tantalizing speculations about the adoption of the Hyundai Hyper Casting method.  Chemical recycling

When queried about this groundbreaking technique, the response was elusive yet suggestive, hinting at an innovative manufacturing platform developed by the Hyundai Motor Group Singapore Innovation Center (HMGICS). This platform incorporates intelligent control systems driven by artificial intelligence, prioritizing employee safety, convenience, and operational efficiency.

Additionally, it employs eco-friendly, low-carbon construction methods, aligning with sustainability goals such as carbon neutrality and RE100 certification.

The investment allocated for the Ulsan expansion amounts to a formidable $1.53 billion, a strategic move in line with Hyundai’s broader vision.  Chemical recycling

The Korean conglomerate aims to bolster domestic production of electric cars from the current 330 thousand units to a staggering 1.51 million by 2030. This surge in production will contribute to a global output of 3 million cars, emanating from 10 factories strategically positioned worldwide.

In this ambitious pursuit, Hyundai plans to unleash approximately thirty electric models under both the Hyundai and Kia brands.

This multifaceted approach positions Hyundai to contend for a spot among the top three electric car manufacturers globally, an echelon currently dominated by Tesla and BYD.

The challenge for electric domination is not only a strategic business move for Hyundai; it is a revival of ambition echoing the spirit of 1963, when Hyundai embarked on its journey. As the electric revolution unfolds, the Korean giant aims to rewrite history and reclaim its position at the forefront of automotive innovation.  Chemical recycling

Hyundai, the electric revolution of the world's largest car factory

Xi Jinping’s upcoming trip to San Francisco from November 14 to 17 holds critical significance, especially in light of the recent economic turbulence between the USA and China

The central focus of this diplomatic journey is a dinner engagement with American captains of industry. The primary objective for the Chinese leader is to reestablish trust and confidence among US investors, given the substantial withdrawal of funds by foreign companies from the Chinese market over the last six quarters.  Chemical recycling

An astonishing $160 billion has been pulled out by foreign companies during this period. Even more concerning is the fact that the Chinese State Administration of Foreign Exchange (Safe) reported a deficit in foreign direct investments for the first time in a quarter of a century, amounting to $11.8 billion in the third quarter of 2023. This financial setback prompted Chinese authorities to diligently prepare for the summit in San Francisco.

Simultaneously occurring with the Apec summit dominated by Biden and Xi, the meeting in San Francisco gathers hundreds of American business executives, including CEOs of major multinational corporations such as Microsoft, Pfizer, and ExxonMobil. The gala evening invitation hints at the participation of a “senior Chinese official and his ministerial delegation.” While the name remains undisclosed, the ticket price is hefty, requiring $40,000 for a table reservation accommodating eight executives. This investment promises a close encounter with the mysterious Chinese official expected to deliver a significant speech.  Chemical recycling

The anticipation surrounding this event stems from the urgent need for Xi Jinping to address the concerns and reservations of American business leaders. The invitation card emphasizes the importance of the speech, raising expectations for a persuasive and reassuring message from the communist general secretary.

Xi’s recent diplomatic efforts include a letter read by his ambassador at the National Committee on US-China Relations gala in New York.

The letter stressed the need for “mutual respect,” “peaceful coexistence,” and “double win-win cooperation,” highlighting the crucial role of amicable relations between the two superpowers for global stability. However, the reality contradicts these diplomatic aspirations.  Chemical recycling

A survey conducted by the US-China Business Council reveals that 34 percent of its members have either halted or reduced planned investments for the year 2023.

The hesitancy among American businesses stems from the Chinese Communist Party’s increased intervention in the market and the intimidating effects of recent anti-espionage legislation. Incidents such as the arrests of employees from Mintz Group and the searches at the offices of Bain & Company in Shanghai have further deterred US businesses.

Beijing TV, in a report on these incidents, has framed them as attempts by Americans to steal intelligence on crucial sectors of the Chinese production system, financial data, energy, and even healthcare. This narrative suggests a purported “well-known plan to contain and suffocate the rise of China.”  Chemical recycling

As of November, Gallup, renowned for its opinion polls, has also withdrawn from China. The question remains: can a $40,000 dinner and an eloquent speech truly alter the perspectives of the skeptical American business community? Xi Jinping’s words during this high-stakes summit will play a pivotal role in shaping the trajectory of US-China economic relations.

Xi Jinping's upcoming trip to San Francisco from November 14 to 17 holds critical significance, especially in light of the recent economic turbulence between the USA and China

Global negotiations for plastic treaty commences in Kenya

The third session of the Intergovernmental Negotiating Committee (INC-3), tasked with developing a legally binding global treaty to address plastic pollution, opened in the Kenyan capital of Nairobi on Monday.Over 2,000 representatives from governments, civil society, industry and academia are attending the seven-day meeting. They will discuss the Zero draft text, which forms the basis for establishing a global treaty to enhance action against plastic litter that is causing harm to terrestrial and marine ecosystems.

In his opening remarks, Kenyan President William Ruto said that plastic pollution remains an existential threat to a just transition as well as human and planetary health, noting that a legally binding treaty could offer some relief.  Chemical recycling

Ruto said ending plastic pollution from the source to the end users will ensure a just and green transition for humanity, promote ecological health and revitalize the growth of the circular economy.

The Kenya meeting follows previous sessions held in Uruguay in 2022, and Paris earlier this year.

The negotiations for a global plastic treaty stem from the adoption of a landmark resolution at the fifth session of the United Nations Environment Assembly held in Nairobi in February 2022.  Chemical recycling

Discussions on the contents of the Zero draft, which was agreed upon at INC-2, will dominate this week’s meeting, aiming to expedite the process of establishing a legally binding global treaty to combat plastic pollution by 2024.

Gustavo Adolfo Meza-Cuadra Velasquez, the INC chairperson, said that the transnational nature of plastic pollution necessitates the creation of an international legally binding instrument to address the challenge. He highlighted the need for legal interventions to support efforts to eliminate plastic pollution that harms wildlife sanctuaries, oceans and freshwater bodies.  Chemical recycling


Global negotiations for plastic treaty commences in Kenya

Sulzer Technology To Enable A Carbon Capture Plant In Austria

Sulzer’s mass transfer technologies are being leveraged by Messer, the world’s largest privately owned industrial gas specialist, in collaboration with a manufacturer of inorganic chemicals to enable innovative carbon capture and utilization (CCU) at a plant in Landeck, Austria.

The CO2 capture unit will rely on Sulzer Chemtech’s carbon capture technology to capture more than 50,000 tons of CO2 per year, which will be re-used in the food & beverage industry and by other companies from nearby regions.  Chemical recycling

Messer and its business partner are collaborating to convert carbon emissions resulting from calcium carbide production into valuable feedstock for food & beverages, greenhouse fertilizers and fire extinguishers. The selected carbon capture technology for flue gas and post-combustion CO2 capture, OASE® blue from BASF, utilizes Sulzer Chemtech’s carbon capture products, which are designed to address the specific needs of carbon capture applications while offering maximum CO2 capture rates in combination with low energy demand.

Sulzer Chemtech Division President Uwe Boltersdorf says: “We appreciate our customers’ needs to remain competitive as they strive to deliver sustainable products and processes – which is why we work to maximize efficiency, performance, and productivity by default. This is how we ensure our range of mass transfer components enable businesses worldwide to adopt more sustainable practices.”  Chemical recycling


Sulzer Technology To Enable A Carbon Capture Plant In Austria

Solid-state batteries – Bio-based Leather Alternative for Auto Interiors Attracts Investment 14-11-2023

Chemical recycling

Solid-state batteries – Bio-based Leather Alternative for Auto Interiors Attracts Investment 14-11-2023

Solid-state batteries

Crude Oil Prices Trend 

Crude Oil Prices Trend by Polyestertime

Crude Oil Prices Trend by Polyestertime

Race to all-solid-state batteries draws in Japan’s AGC, Idemitsu

Companies work to slash time and cost of making vital material

Japanese materials maker AGC and energy group Idemitsu Kosan have made strides toward mass producing the main ingredient in all-solid-state batteries, which are seen as a next-generation power source for electric vehicles.

All-solid-state batteries contain solid electrolytes instead of the liquid ones found in lithium-ion batteries.

They have been hailed as a safer, fast-charging alternative for powering EVs, but production at significant levels remains years away. Solid-state batteries

Efforts to build a supply chain for them are moving ahead in Japan, which leads in patent applications for all-solid-state battery technology, followed closely by China.

AGC, the world’s leading automotive glass producer, has built a test facility for solid electrolytes inside the company’s Yokohama Technical Center.

Research is underway on combining up to 10 ingredients and melting them at below 1,000 C to produce a dark molten material. When it cools, the liquid solidifies into a yellow sulfide electrolyte.  Solid-state batteries

“Although it’s a late start, the new technology gives us good prospect of coming from behind,” said Naoki Okahata, a senior manager at AGC. The company announced its entry into sulfide electrolytes in September.

Toyota Motor is developing an all-solid-state battery that can be recharged in under 10 minutes and provide 1,200 kilometers per charge, more than double the range of today’s EVs. Toyota aims to roll out cars with all-solid-state batteries in 2027 or 2028.

Research and development into all-solid-state batteries in Japan goes back two or three decades, with Idemitsu among the pioneers. AGC’s program is less than four years old.

But since September, “the reception has been significant, and we’ve received inquiries from manufacturers around the world,” said an AGC representative.

Ions move more easily between electrodes through solid sulfide electrolytes than with liquid ones. Sulfide solid-state batteries are also resistant to temperature changes, allowing for reduced charge times, extended EV ranges and a smaller battery.

But sulfides are chemically unstable.  Solid-state batteries

To work in EVs, they need to overcome hurdles in durability and high production costs. One of the biggest challenges has been ensuring the chemicals are evenly combined, which has been difficult to do with conventional methods.

This is where AGC stepped in, with over 100 years of glassmaking know-how in melting together materials to produce a homogenous solid.

The company developed its own technology for melting together lithium sulfide and other materials to produce electrolytes of high consistency. The process speeds up the chemical reaction and shortens production time to less than a tenth of conventional methods.

“For automotive applications requiring a large amount of electrolyte, this ensures lower production costs,” Okahata said.

The cost to produce all-solid-state batteries can range from four to 25 times that of lithium-ion batteries, according to the Japan Science and Technology Agency.

Electrolytes account for 76% of materials costs. Lowering mass production costs will be key to bringing solid-state EV batteries into the mainstream.  Solid-state batteries

AGC’s process can also incorporate raw materials that are difficult to mix, which opens up a wider variety of compositions. Since lithium is relatively scarce, AGC looks to use material recycled from used batteries.

AGC will build a large pilot electrolyte facility by 2025, with the goal of bringing the product to market between 2027 and 2028. The company has set an annual revenue target of 10 billion yen ($66 million) by 2030 for the business.

Idemitsu, which ranks second in the world in patent applications for solid sulfide electrolytes, entered into a partnership with Toyota in October to mass produce all-solid-state batteries.


Solid-state batteries

Purecycle sends first shipments of recycled resin

Florida-based polypropylene (rPP) recycler Purecycle has sent out its first shipments of recycled resin after a force majeure and months of delay during construction.

Purecycle, which has built its first recycling plant in Ironton, Ohio, says its unique solvent-based recycling technology allows the company to create rPP that has properties closer to virgin material.

Purecycle said they have recycled 409,000 lbs, or 204.5t, of used polypropylene so far at its Ironton plant. The company has sent its first shipments of rPP to Formerra and Milliken, two US-based polymer producers.

Purecycle aims to increase its production to 4.45mn lbs of input capacity per year by 31 December.  Solid-state batteries

“Ironton is the first facility of its kind and as expected, we are working through many challenges in getting the facility to run on a continuous basis,” Chief executive Dustin Olson said. “We have identified a set of reliability and operational improvements that are expected to be addressed during a two-week outage in November, including the installation of an automatic screen changer on the final product extruder, which has impacted continuous run times.”

The company noted that most of its production issues have been as a result of mechanical issues that are part of an “operational learning curve”.


Solid-state batteries

New oil from plastic that pollutes the sea

Sea plastic is a huge environmental problem, but it can also be a valuable resource. Aenea, a research institute, has developed a way to transform more than 90% of the plastic recovered from the sea into new oil, using a chemical process called pyrolysis. Pyrolysis breaks down the plastic by heating it to over 400 degrees without oxygen.

The process also uses another waste material, the ash from coal plants, as a catalyst.

The new oil obtained from pyrolysis is very rich in hydrocarbons, which can be used to make fuels, high quality chemicals, new plastics, paints, solvents and many other products.  Solid-state batteries

The process is cleaner and more efficient than using the original oil.

The American Chemical Society has certified the results of Aenea’s technology and published them in its online journal ACS Sustainable Chemistry & Engineering.

The challenge of reducing plastic pollution Plastic pollution is a global threat to the oceans and marine life.

Every year, the world produces 400 million tons of plastic waste, and at least 10 million tons end up in the oceans, forming huge floating islands of plastic debris.

These islands interfere with navigation and are only the tip of the iceberg of the damage caused by plastic.  Solid-state batteries

Plastic takes more than 600 years to degrade naturally, and in the sea it breaks into smaller pieces, called microplastics, that attract and absorb other pollutants, such as pesticides, fertilizers, industrial waste, detergents and cosmetics.

These microplastics then enter the food chain, affecting fish, mammals, birds and humans. The effects of plastic on health, nutrition, metabolism and hormones are unknown and worrying.

A local and circular solution The current methods of recycling and disposing of sea plastic are mainly based on mechanical processes, which have many limitations and difficulties, especially when the plastic is mixed with other materials.  Solid-state batteries

Catalytic pyrolysis, on the other hand, offers a more effective and sustainable solution, as it can handle large quantities of heterogeneous and unsorted waste.

Moreover, pyrolysis can be done locally, using small plants installed in ports, which could even produce fuel for boats from the plastic collected at sea, suggests Riccardo Tuffi, the Aenea researcher who carried out the research with his colleagues Lorenzo Cafiero and Doina De Angelis.

This would create a circular and zero-kilometer recycling system, turning a problem into an opportunity.

Solid-state batteries

Bio-based Leather Alternative for Auto Interiors Attracts Investment

NFW, a startup based in Peoria, IL, that produces non-petroleum-based leather alternatives for car interiors, has attracted investment from Asahi Kasei. The Japanese company and its US-based affiliate, Sage Automotive Interiors Inc., said it will work with NFW in a strategic partnership enabling another major step to support global automotive OEMs in reducing the environmental burden of automobiles.

NFW was founded in 2015 and has developed a platform capable of producing precision-engineered leather, foam, and textiles without using animal- or petrochemicals-based materials.  Solid-state batteries

The company’s patented leather alternative, called Mirum, is certified by the US Department of Agriculture as having 100% bio-based content, and is made from natural rubber, fibers, plant oils, pigments, and minerals. The material’s durability and quality make it a suitable replacement for traditional animal-based or synthetic leather products without the use of polyurethane or other coatings.

A yen for sustainable growth

Sage Automotive is engaged in the development, manufacture, and sale of innovative functional materials used in automobile interiors globally. Since its acquisition by Asahi Kasei in 2018, Sage has been strengthening its business activities in Europe and China through mergers and acquisitions, parallel to expanding its lineup of growth-potential materials such as suede and synthetic leather.  Solid-state batteries

As one of the leading global suppliers in the car seat fabric market, Sage has a strong presence among automakers and suppliers.

Dirk Pieper, chairman of the Sage board of directors and lead executive for the development and growth of Asahi Kasei’s overall automotive product offering, stated: “The cooperation with NFW will enable Asahi Kasei and Sage to assist global automakers in reducing the environmental burden of their cars. By jointly developing and manufacturing a non-petroleum-based and fully circular leather alternative, the Asahi Kasei Group takes a leading position in revolutionizing the market for car interior materials.”

Asahi Kasei earmarks $100 million for sustainability-minded startups

The cooperation with NFW is the first project within Asahi Kasei’s Care for Earth investment framework announced in April 2023.  Solid-state batteries


Bio-based Leather Alternative for Auto Interiors Attracts Investment

Novozymes launches Quara LowP

As the world seeks sustainable alternatives to traditional fuels, renewable diesel and SAF production have taken center stage. By 2030, vegetable oils are projected to account for over 40 percent of global feedstock used in renewable diesel and SAF production. However, producers have long grappled with challenges related to feedstock availability, pricing fluctuations, and the ever-increasing market demand.

To address these pressing issues, Novozymes has leveraged its extensive experience in enzymatic degumming, which has resulted in Quara LowP, an innovative solution that gives customers flexibility to process mixed feedstocks without negatively impacting their bottom line.  Solid-state batteries

“This innovation is a testament to our commitment to sustainable solutions for the renewable diesel and SAF industry. Quara LowP offers producers the flexibility to process blends of feedstocks resulting in increased efficiency, reduced operating costs, and lowered environmental impact. It is a great contribution to the industry and a reflection of Novozymes’ dedication to rethinking tomorrow,” said Hans Ole Klingenberg, VP of marketing, Agriculture & Industrial Biosolutions at Novozymes.

A sustainable solution for a growing demand

Quara LowP facilitates the efficient processing of HVO (Hydrotreated Vegetable Oil) and HEFA (Hydroprocessed Esters and Fatty Acids) feedstocks. By pretreating these feedstocks with Quara LowP, producers can achieve higher yields and significantly lower operational costs, all while reducing the environmental footprint of their operations.

This innovation holds profound significance for the HVO and SAF industry:
•    Increased efficiency: HVO/HEFA feedstock producers now have a means to process blends of vegetable oils with other lipid feedstocks without compromising yield or incurring additional operating costs.  Solid-state batteries

The current practice of overusing bleaching earth/bleaching clay to address contaminants in vegetable oils when blending with waste oils is a thing of the past. Quara LowP offers a more efficient and cost-effective solution.
•    Economic benefits: With Quara LowP, producers can enjoy increased yields and lower operating costs, overcoming process inefficiencies.
•    Environmental impact: The industry can benefit from a greener operation, with reduced waste handling hazards and lower water consumption, aligning with the global sustainability goals.  Solid-state batteries


Novozymes launches Quara LowP

Republic Services and Blue Polymers to develop plastics recycling complex

The move is part of a JV established between the companies earlier this year.

Republic Services and Blue Polymers have broken ground on a new plastics recycling complex in Indianapolis, US.

The site encompasses a Republic ‘Polymer Center’ and a Blue advanced polymer production facility.  Solid-state batteries

Both facilities are anticipated to be opened by the end of next year.

They are expected to promote the circularity of plastics and provide recycled materials for sustainable packaging and other applications.

The Indianapolis-based site will comprise two buildings with a combined area of approximately 286,000ft² and create roughly 125 permanent jobs for the local community.

Lauth Group has been selected for the development and construction of the project.

Republic recycling and sustainability vice-president Pete Keller said: “Through our Polymer Center network and Blue Polymers partnership, we’re helping customers achieve their ambitious recycled content goals by producing high-quality recycled plastics.

“As a leader in the environmental services industry and one of the nation’s largest recyclers, Republic Services is uniquely positioned to advance plastics circularity and the region’s circular economy while supporting Indianapolis’ vision for a more resilient future.”

Republic is establishing a national network of Polymer Centers alongside Blue Polymers’ production facilities via a joint venture (JV) established earlier this year.


Republic Services and Blue Polymers to develop plastics recycling complex

Polypropylene (PP) prices drift lower in Europe

This week, PP prices slipped in Europe.  Solid-state batteries
An industry source in Europe informed a Polymerupdate team member, “A bearish pricing sentiment prevailed in the European PP market as demand weakened ahead of winter. A moderate rise witnessed in consumer activity over the last two months has ebbed considerably, with a large number of market participants procuring inventories prior to the onset of winter and making purchases on a need-based basis.”
The source added, “Prices further trended lower as sellers were keen on destocking their excess inventories ahead of the winter season typically marked by depressed demand sentiments.”
In the spot markets, PP injection moulding grade prices were assessed at the Euro 1125-1135/mt FD North West Europe mark, a decline of Euro (-30/mt). PP block copolymer grade prices were assessed at the Euro 1175-1185/mt FD Northwest Europe levels, week on week sharply lower by Euro (-40/mt).
In the contract markets, PP injection moulding grade prices were assessed at the Euro 1420-1425/mt FD NWE Germany and FD NWE France levels, both fallen by Euro (-20/mt) from the previous week. PP injection moulding grade prices were assessed at the Euro 1410 1415/mt FD NWE Italy levels, a drop of Euro (-20/mt) from last week. Meanwhile, PP injection moulding grade prices were assessed at the GBP 1235-1240/mt FD NWE UK levels, week on week down by GBP (-15/mt).  Solid-state batteries
In the contract markets, PP block copolymer grade prices were assessed at the Euro 1500-1505/mt FD NWE Germany and FD NWE France levels, both lower by Euro (-20/mt) from last week. PP block copolymer grade prices were assessed at the Euro 1490-1495/mt FD NWE Italy levels, a drop of Euro (-20/mt) from the previous week. Meanwhile, PP block copolymer grade prices were assessed at the GBP 1305-1310/mt FD NWE UK levels, down GBP (-15/mt) from last week.
FCA Antwerp PP homopolymer prices were assessed at the Euro 1110-1140/mt levels, a week on week fall of Euro (-20/mt), while FCA Antwerp PP copolymer prices were assessed at the Euro 1160-1190/mt levels, a sharp week on week drop of Euro (-40/mt).
Upstream propylene spot prices on Thursday were assessed at the Euro 875-885/mt FD Northwest Europe levels, week on week rise of Euro (+15/mt).  Solid-state batteries


Polypropylene (PP) prices drift lower in Europe

Packaging waste – New project called GRAPHERGIA to revolutionize energy harvesting in textiles and battery technology 13-11-2023

Solid-state batteries

Hydrogen Cars – Recover™ And Valdese Weavers Partner For Circularity In The Home Textiles Industry 11-11-2023

Hydrogen Cars

Do Hydrogen Cars Waste Water?

In recent years, hydrogen-powered cars have gained attention as a potential solution to reduce greenhouse gas emissions and combat climate change. These vehicles use hydrogen fuel cells to generate electricity, emitting only water vapor as a byproduct. However, a common question arises: do hydrogen cars waste water? Let’s explore this topic and shed light on the matter.

Hydrogen Cars and Water Consumption

Contrary to popular belief, hydrogen cars do not waste water. The water vapor emitted from the tailpipe of a hydrogen car is a byproduct of the chemical reaction that occurs within the fuel cell. This reaction combines hydrogen fuel with oxygen from the air, resulting in the production of electricity and water vapor. Therefore, the water vapor released is simply a natural consequence of the car’s operation and does not contribute to water waste.  Hydrogen Cars

Water Recycling in Hydrogen Cars

It is important to note that hydrogen cars have a water recycling system in place. This system collects and recycles the water vapor produced during the vehicle’s operation. The collected water is then reused within the fuel cell, ensuring a closed-loop system that minimizes water consumption. This recycling process further emphasizes the efficiency and sustainability of hydrogen cars.

FAQ: Frequently Asked Questions

Q: Can the water emitted by hydrogen cars be used for other purposes?
A: The water vapor emitted by hydrogen cars is generally in small quantities and not suitable for use in other applications. It is primarily released into the atmosphere as harmless water vapor.  Hydrogen Cars

Q: How does the water recycling system in hydrogen cars work?
A: The water recycling system in hydrogen cars collects the water vapor emitted during operation, purifies it, and reintroduces it into the fuel cell. This closed-loop system ensures minimal water consumption.

Q: Are hydrogen cars more water-efficient than traditional combustion engine cars?
A: Yes, hydrogen cars are more water-efficient than traditional combustion engine cars. While traditional cars emit pollutants and do not generate water as a byproduct, hydrogen cars produce only water vapor, making them environmentally friendly.

In conclusion, hydrogen cars do not waste water.  Hydrogen Cars


Hydrogen Cars

Recover™ And Valdese Weavers Partner For Circularity In The Home Textiles Industry

November 9, 2023Valdese Weavers, a producer of decorative textiles in the United States for residential and contract markets, has partnered with global recycled cotton fiber producer, Recover™, to transform the home textile industry. The two innovative textile leaders, both at different stages of the supply chain, intend to capitalize on their combined expertise to drive the use of sustainable materials in the industry.

Valdese Weavers has more than 100 years of textile experience and works with a full range of furniture manufacturers, distributors, and retailers to deliver unparalleled design through their vertical manufacturing facilities. The company understands the importance of choosing responsible raw materials, and already offers a collection of environmentally conscious products. By partnering with Recover™, they can offer the highest quality decorative fabrics made with RCS/GRS verified Recover™ recycled fiber and help brands and retailers to reduce their environmental impact caused by virgin raw material production.  Hydrogen Cars

Blake Millinor, President and CEO of Valdese Weavers, commented: “We are proud to partner with Recover™ as a natural fiber platform for our customers searching for sustainable fabrics. Recover™ compliments our sustainable product offering by helping create a more circular material solution. We are excited to be working with the Recover™ team to tell this unique story and develop more responsible textile solutions for our customers”.

Recover™ has perfected the art and science of scaled production of recycled cotton fiber over more than 75 years, and today, the company is supported by leading institutional investors including STORY3 Capital, Goldman Sachs, Fortress Investment Group and Eldridge Industries.  Hydrogen Cars

Its recycled cotton fiber is fundamentally transforming the textile industry, making significant environmental savings compared to virgin and organic cotton, and it is one of the most sought-after fibers in the recycled materials space. The integration of Recover™ fiber into Valdese Weaver’s product lines, enables the textile mill to remain frontrunners in delivering sustainable and innovative fabrics, and accelerate the production of low-impact products such as sofas, cushions, and curtains.


Hydrogen Cars

Amcor to source mechanically recycled polyethylene from NOVA Chemicals

The multiyear collaboration will focus on the incorporation of mechanically recycled polyethylene resin in flexible packaging films.

Amcor has unveiled a Memorandum of Understanding (MOU) with sustainable polyethene producer Nova Chemicals Corporati  Hydrogen Cars

This multiyear collaboration focuses on Amcor’s commitment to circular content, emphasising the incorporation of mechanically recycled polyethene resin (rPE) in flexible packaging films.

Fuelling circular content with SYNDIGO rPE resin

The heart of this collaboration lies in the supply agreement that positions Amcor to procure SYNDIGO rPE resin.  Hydrogen Cars

This resin, scheduled to be produced at NOVA Chemicals’ mechanical recycling facility in Connersville, Indiana, is anticipated to commence operations as early as 2025.

Amcor flexibles North America president Fred Stephan expressed enthusiasm, stating: “This is an exciting opportunity for us to supplement our rPE supply as we strive to achieve a 30% recycled material usage across our global portfolio by 2030.”

Driving sustainable practices

Amcor’s strategic move aligns with its global vision to foster sustainability and packaging circularity.  Hydrogen Cars

By integrating rPE into flexible packaging films, the company aims to assist brand owners in meeting recycled content targets, reducing greenhouse gas emissions, and actively contributing to the preservation of the environment.

NOVA circular solutions vice-president Greg DeKunder shared the sentiment, stating: “Reshaping plastics for a better future will take collaboration within our industry, and we share Amcor’s commitment to further global packaging circularity.”

NOVA Chemicals’ expansion to propel circular solutions

In parallel, NOVA Chemicals unveiled plans to expand its recycling footprint across North America in the coming years.  Hydrogen Cars


Hydrogen Cars

Honda, Mitsubishi Chemical Develop Colored Acrylic Resin for Car Bodies

Article-Honda, Mitsubishi Chemical Develop Colored Acrylic Resin for Car Bodies

Mitsubishi Chemical and Honda Motor are jointly developing a PMMA (polymethyl methacrylate acrylic) acrylic compound for automotive body components such as doors and front fenders. Two concept models — the Sustaina-C and Pocket concept cars — using these materials are exhibited at the Honda booth in the Japan Mobility Show 2023 which concludes on Nov. 5, 2023, in Tokyo.  Hydrogen Cars

Painted steel is the most commonly used material for automobile bodies, but Mitsubishi Chemical and Honda aim to transform the status quo by developing a new acrylic resin material that can be adopted for doors, hoods, fenders, and other automotive body parts. The compound is composed of acrylic resin and rubber particles to improve the impact resistance required for automobile bodies.

Acrylic resins are highly transparent and can be toned to a variety of colors, enabling manufacturers to create glossy surfaces simply by adding colorants. It also helps reduce CO2 emissions generated in the painting process.  Hydrogen Cars

Furthermore, acrylic resin is suitable for recycling because it can be decomposed into acrylic raw materials at high yields by heating. With a view to starting operation of a recycling plant in fiscal 2025, Mitsubishi Chemical aims to commercialize an acrylic resin molecular recycling business. Closed-loop recycling trials conducted in collaboration with Honda and Microwave Chemical Co. Ltd. have yielded recycled products comparable in quality to conventional products. Mitsubishi Chemical expects to reduce greenhouse gas (GHG) emissions through this technology over the entire product life cycle by about 50% compared with current practices.  Hydrogen Cars


Honda, Mitsubishi Chemical Develop Colored Acrylic Resin for Car Bodies

The tech to recycle clothes is only just being invented

The vast waste and pollution caused by the fashion industry has made recycling clothes a top priority, but only now are simple tasks like pulling the sole off a shoe being done by machines.

CETIA, a company in the southwest of France is finally offering some mechanical solutions to the challenges of recycling clothes.

Its research team has invented a machine that uses artificial intelligence to scan garments, identify hard elements like zippers and buttons, and use a laser to cut them out.  Hydrogen Cars

It has also built a machine that grabs shoes in a large mechanical arm and yanks off the soles.

In a world of space travel and vaccines, that may seem a relatively rudimentary piece of technology, but it had simply never been done before.

“It was a chicken and egg question. No one was recycling soles because we couldn’t separate them from the shoe, and no one was separating them because there was no recycling,” said Chloe Salmon Legagneur, director of CETIA.

Previously, recyclers had to bake the shoes for many hours to melt the glue and then pull the sole off by hand.  Hydrogen Cars

“There’s nothing spectacular in what we’ve done,” Legagneur said. “But we’ve done it.”

For now, barely one percent of textiles in Europe are turned back into new clothes. Most end up as housing insulation, padding or asphalt for paving roads.

That is because clothes are usually a complex mix of materials that must be separated carefully to keep the fibers in good condition if there is any hope of respinning them into new garments.

Usually done by hand, CETIA says its AI-laser machine can do this at a much faster rate that is rapidly evolving as it perfects the technology.

It also has machines that can sort clothes by color and composition at a rate of one per second.

The reason these inventions are finally emerging is that tough new European rules are imminent that will force clothing companies to use a set amount of recycled fibers in their garments.  Hydrogen Cars

CETIA’s work is backed by big retailers like Decathlon and Zalando who are urgently looking for industrial-scale solutions.

There are also political incentives. The French government sees the potential for new manufacturing jobs if recycling technology allows it to deal with some of the 200,000 tonnes of textile waste currently being shipped abroad each year.

CETIA’s focus is on preparing textiles for reuse. Other companies must now start melting down the separated soles and turning them into new ones.

But it is an important first step.  Hydrogen Cars


The tech to recycle clothes is only just being invented

Is Piovan Using Too Much Debt?

The external fund manager backed by Berkshire Hathaway’s Charlie Munger, Li Lu, makes no bones about it when he says ‘The biggest investment risk is not the volatility of prices, but whether you will suffer a permanent loss of capital.’ So it might be obvious that you need to consider debt, when you think about how risky any given stock is, because too much debt can sink a company. We can see that Piovan S.p.A.  does use debt in its business. But should shareholders be worried about its use of debt?

What Risk Does Debt Bring?

Debt is a tool to help businesses grow, but if a business is incapable of paying off its lenders, then it exists at their mercy.  Hydrogen Cars

Ultimately, if the company can’t fulfill its legal obligations to repay debt, shareholders could walk away with nothing. While that is not too common, we often do see indebted companies permanently diluting shareholders because lenders force them to raise capital at a distressed price. Having said that, the most common situation is where a company manages its debt reasonably well – and to its own advantage. The first step when considering a company’s debt levels is to consider its cash and debt together.

How Much Debt Does Piovan Carry?

As you can see below, Piovan had €174.0m of debt, at June 2023, which is about the same as the year before. You can click the chart for greater detail. However, because it has a cash reserve of €73.8m, its net debt is less, at about €100.3m.  Hydrogen Cars

A Look At Piovan’s Liabilities

According to the last reported balance sheet, Piovan had liabilities of €207.6m due within 12 months, and liabilities of €140.0m due beyond 12 months. Offsetting this, it had €73.8m in cash and €106.4m in receivables that were due within 12 months. So its liabilities total €167.4m more than the combination of its cash and short-term receivables.

While this might seem like a lot, it is not so bad since Piovan has a market capitalization of €469.5m, and so it could probably strengthen its balance sheet by raising capital if it needed to. But it’s clear that we should definitely closely examine whether it can manage its debt without dilution.  Hydrogen Cars

In order to size up a company’s debt relative to its earnings, we calculate its net debt divided by its earnings before interest, tax, depreciation, and amortization (EBITDA) and its earnings before interest and tax (EBIT) divided by its interest expense (its interest cover). Thus we consider debt relative to earnings both with and without depreciation and amortization expenses.

Piovan has a low net debt to EBITDA ratio of only 1.5. And its EBIT covers its interest expense a whopping 30.6 times over. So you could argue it is no more threatened by its debt than an elephant is by a mouse. On top of that, Piovan grew its EBIT by 69% over the last twelve months, and that growth will make it easier to handle its debt. There’s no doubt that we learn most about debt from the balance sheet. But it is Piovan’s earnings that will influence how the balance sheet holds up in the future. So when considering debt, it’s definitely worth looking at the earnings trend.  Hydrogen Cars

Finally, while the tax-man may adore accounting profits, lenders only accept cold hard cash. So we clearly need to look at whether that EBIT is leading to corresponding free cash flow. Over the most recent three years, Piovan recorded free cash flow worth 76% of its EBIT, which is around normal, given free cash flow excludes interest and tax. This cold hard cash means it can reduce its debt when it wants to.


Is Piovan Using Too Much Debt?

Chlorophyll Water launches 100% rPET bottles with Clean Flake technology

Chlorophyll Water has transitioned to bottles made from 100% rPET with Clean Flake technology. These rPET bottles are manufactured from food-grade PET which is recycled as per the technologies approved by the US FDA and European Food Safety Authority (Efsa) for food-grade recycled material and repurposed into new PET bottles.

“As a brand, Chlorophyll Water is committed to sustainability and implementation of new ideas and technology which can improve the impact that packaging has on our environment,” explains founder Matt Levine, “in utilising bottles made from 100% recycled plastic, our intention is to make a meaningful environmental impact – addressing the plastic waste challenge, minimising our use of virgin, fossil-fuel based packaging.”

To accompany their bottle made from 100% recycled plastic, Chlorophyll Water selected Avery Dennison’s Clean Flake label technology as their label to help improve the yield of high-quality, food grade PET in the recycling process.  Hydrogen Cars

The technology is built on a water-based adhesive technology that is claimed to separate cleanly from PET during the caustic wash stage of the recycling process.

Chlorophyll Water is a plant-powered purified water enhanced by nature with the addition of Chlorophyll, a key ingredient and the distinct green pigment in plant life. It is carbon-filtered using triple filtration and is UV-treated for a high level of purity.


Chlorophyll Water launches 100% rPET bottles with Clean Flake technology

Circular Textiles – One million tonnes of plastic additives pollute the world’s oceans each year 10-11-2023

Hydrogen Cars

Circular Textiles – One million tonnes of plastic additives pollute the world’s oceans each year 10-11-2023

Circular Textiles

Crude Oil Prices Trend

Crude Oil Prices Trend by Polyestertime

Crude Oil Prices Trend by Polyestertime

Automation – Sorting the Circular Textiles Gap

Advanced technologies for the classification and pre-processing of waste garments are now an urgent requirement, as the textile industry looks to close the loop. All the indications are that by 2030, recycling will have become a much bigger part of the global picture, and automation has a major role to play, especially in sorting and pre-processing.

Automated processes are already highly developed all along the global textile and garment manufacturing chain. Circular Textiles

The supply chain is, however, still strictly linear, while being highly complex – spanning from fibres to finished garments and still involving tremendous waste and many unnecessary transportation steps globally on the route from the first chemical processing plants or cotton fields to the shelves of High Street stores.

In addition to continuing to address these issues, the supply chain will now very quickly have to become more circular, as legislation closes in and changes things dramatically.

New Restrictions

There is an immediate need for advanced new technologies that can close the loop for the collection, sorting and pre-processing of waste garments, in order for recycling to be further developed, especially in the European Union (EU), which will be first in imposing new restrictions. Circular Textiles

As previously reported by Fibre2Fashion, over seven million tons of waste textiles is being mandated to be separately collected each year within the EU from 2025. It will be paid for by the brands who put product into the market via the new Extended Producer Responsibility (EPR) scheme, and this waste is no longer eligible to be landfilled, incinerated or moved on to other countries. As such, it will create a 32 million-ton mountain of new waste by 2030 without immediate action.

Worn Again Technologies

The huge challenge this poses was emphasised by a number of speakers at the 62nd Dornbirn Global Manmade Fibers (GFC) conference held in Austria from September 13-15, including Toby Moss, director of business development for Worn Again Technologies. Circular Textiles

Worn Again Technologies has raised funding of some €42.9 million to support the construction of its new textile chemical recycling demonstration plant in Winterthur, Switzerland, and counts Sulzer, Oerlikon and fashion retailer H&M among its key strategic investors.

The demonstration plant will be opened in 2025 and will recycle fibres from hard-to-recycle fabric blends using a solvent-based process, with an annual capacity of 1,000 tons. (Just for context, annual global fibre consumption is currently 120 million tons.)

Licensing model

Worn Again, however, is a technology licensing company and does not plan to build its own facilities, but is working with technology partners who will quickly build much larger-scale commercial plants. Circular Textiles

The first of these is expected to come onstream in Europe and have annual capacities of approximately 50,000 tons per annum by as early as 2027-28, when feedstock streams from waste textiles have sufficiently built up.

“At the moment, most current recyclers are focused on post-industrial waste, but demand will soon outstrip supply, which will lead to a rush into post-consumer textile waste,” Moss said. “At the same time, recycling capacity is not yet growing as fast as demand, while bottle companies are getting a lot better at bottle collection so a lot of rPET from bottles currently used in textile production will not be available. As a result, recycled content in textiles is likely to go down rather than up for a period and this indicates some healthy price premiums for the first companies producing recycled PET polyester fibres with the same performance as virgin fibres.”  Circular Textiles

As with many other current recycling technologies being developed and planning industrial upscaling in the near future, success is in part hinged on the collection and sorting of waste clothing becoming much more sophisticated – and quickly.


Circular Textiles

UK-based Colorifix aims to bring environmentally friendly fabric-dyeing solution to China and Southeast Asia in 2025

  • Biotech start-up will focus on markets in India and Sri Lanka next year, before making its move to China and Southeast Asia
  • Production life-cycle using its solution can help reduce carbon emission by 31 per cent, water consumption by 77 per cent and chemical usage by 80 per cent

Colorifix, a finalist for Prince William’s Earthshot prize, aims to bring its environmentally friendly fabric-dyeing solution to markets in China and Southeast Asia in 2025 to help tackle pollution in the garment manufacturing industry.  Circular Textiles

The biotech start-up uses DNA sequences from nature and microorganisms to create pigments that can be fixed onto fabrics in a way that significantly reduces water and chemical usage, as well as the carbon footprint in the dyeing process.

The UK firm will make its foray into the Asian markets from the first half of next year, starting with India, the world’s fifth-largest producer of textiles, and Sri Lanka, according to its chief operating officer Christopher Hunter. The firm is still in “very early stages” of establishing its presence in China, he added.

“China is a very important market for textiles,” Hunter said in a video interview on Tuesday. Circular Textiles

“We are aware that there are increasing environmental targets for the industry in China, which might in some way accelerate our entry. It won’t be before 2025.”

China announced in April last year that it aimed to recycle 25 per cent of its textile waste and churn out 2 million tonnes of recycled fibre by 2025, part of its big push to achieve peak carbon emissions by 2030 and carbon neutrality by 2060. That included promoting green and low-carbon production in the textile industry.


Circular Textiles

The battery is the key factor for electric cars’ convenience and affordability. The battery is also the main source of anxiety and doubt for many drivers

It is obvious that the high price of electric cars is related to the battery.

Let’s see why. Electric cars: the battery determines the economic difference Electric cars are gradually winning over drivers, especially in Italy, that the energy transition is possible on a large scale.  Circular Textiles

However, the electric transition imposed by the European Union in a short time is not very encouraging for the switch from thermal engines to electric ones.

What makes electric cars less attractive is the high cost of eco-friendly vehicles, which are on average between 10,000 and 15,000 euros more expensive than a combustion car in the same segment and, as expected, not everyone can afford them.

How can the costs be lowered and what are they mainly due to? The answer is simple: to the batteries.  Circular Textiles

Andy Palmer, former operations director of Nissan and responsible for the first Leaf, confirmed this and also predicted a drop in prices in the next few years.

Cheap electric cars: we need smaller batteries and a change of mentality Andy Palmer, former operations director of Nissan, provided the solution to lower the costs of electric cars.

He said: “The solution for an affordable electric vehicle is not to wait for the technology to mature, it’s not necessarily playing with the chemistry: it’s simply using a smaller battery. But to have a smaller battery you need charging infrastructure, that’s the key.

A decent charging network including home chargers probably has around 15 million charging points and we are a long way from that at the moment.

Unless an effective infrastructure is achieved quickly, people will not naturally transition to electric vehicles.  Circular Textiles

People will continue to mention range anxiety and you won’t change that mindset. With a ubiquitous network, people won’t worry so much about battery life, they’ll know they can always plug into a charger and that’s when a smaller battery can be accepted.

That’s when you get the transformation.” However, not only a technical change is needed, but also a mental one by the consumers, as David Greenwood, expert in advanced propulsion systems at the Warwick Manufacturing Group, explained: “The key is not to buy an EV with more battery capacity than you need, if you spend a fortune on a car capable of 500 miles and then only drive 10 miles a day, you’re paying for the battery and all the systems, but not you will save on fuel to cover them.  Circular Textiles

A manufacturer could make three different module models and assemble them into eight different models to achieve economies of scale at the module level.

Something that would allow us to obtain economies of scale and introduce much larger cells.

While in the early days batteries like Tesla’s contained thousands of small cells, the future will see batteries containing hundreds of much larger cells.”

Circular Textiles

Korean petrochemical firms ramp up carbon fiber production

The South Korean petrochemical industry is ramping up the production of carbon fiber, a part of its focus on high value-added businesses to develop mid- to long-term growth engines amid a prolonged slump in the market.  Circular Textiles
According to multiple industry sources on Tuesday, Hyosung Advanced Materials Corp. plans to expand its carbon fiber production capacity, which currently stands at 9,000 tons per year, to 16,500 in 2024, 21,500 tons in 2025, and 24,000 tons by 2028.

The company has also decided to establish a new carbon fiber production entity, Hyosung Vina Core Materials Co., in Ba Ria-Vung Tau Province in southern Vietnam.
Toray Advanced Materials Korea Inc. also recently held a groundbreaking ceremony for the expansion of its carbon fiber unit 3 in Gumi City, North Gyeongsang Province.

The company plans to expand its annual carbon fiber production capacity to 8,000 tons by 2025 from 4,700 tons.  Circular Textiles
Carbon fiber is called “super fiber” as it weighs one-fourth of iron but is over 10 times stronger.

Demand is growing in many areas, including compressed natural gas (CNG), compressed hydrogen storage, automotive parts, and wind blades.

The market for carbon fiber, also dubbed the “rice of the future,” is expected to grow at nearly 10 percent on average annually.
Global demand for polyacrylonitrile (PAN) carbon fiber is expected to increase to 327,000 tons in 2035 from 112,000 tons in 2023, according to Japanese market research firm Fuji Keizai Co.  Circular Textiles
The recent decisions by petrochemical companies to enter the carbon fiber business come as they seek growth engines with high value-added products amid a sluggish market. Hyosung Advanced Materials, whose flagship product is tire reinforcement materials, posted sales of 783.3 billion won ($597.03 million) in the third quarter, down 20 percent from a year ago, and an operating profit of 35.7 billion won, down 46 percent.

Sales of tire reinforcements and seat belts and airbags fell 29 percent and 15 percent respectively from a year earlier to 426.5 billion won and 141.3 billion won each. The decline is likely due to the slowdown in the automotive industry.
Meanwhile, the carbon and aramid fiber segments saw solid demand and posted an 11 percent increase in sales that hit 90.7 billion won during the period.
The securities industry forecasts that Hyosung Advanced Materials’ operating profit from the carbon fiber segment will outperform that of the tire reinforcement business from the second half of 2024.  Circular Textiles
Increased solar power generation is also driving demand for carbon fiber. Recently, carbon fiber has been in demand for insulation materials used to produce polysilicon and ingots, which are key value chains in the solar industry.
Ceramic was used for insulation previously but is being replaced by carbon fiber for its short replacement cycle.
Hyosung Advanced Materials’ carbon fiber brand TANSOME? 

Coca Cola, Nestlé face scrutiny on recycled bottles claims


Dutch consumer watchdog Consumentenbond has joined European consumer organisation Beuc and other groups from 12 EU countries in a legal complaint against food and drink giants Coca Cola, Danone and Nestlé for misleading claims about recycling plastic bottles.
The groups on Tuesday filed a case to the European Commission and consumer protection authorities’ network CPC calling for an investigation into claims that plastic water bottles sold across Europe are ‘100% recyclable’ or ‘100% recycled’.  Circular Textiles

They also denounced the use of images suggesting that plastic bottles have no impact on the environment. The groups argue such claims are “factually incorrect” and do not comply with EU rules as they mislead consumers.

The recycling rate for PET plastic bottles is estimated to be 55% across the EU and the likelihood of it becoming a bottle again is around 30%, the groups say.

The claims also do not consider that virgin materials can be added during manufacturing and parts of a plastic water bottle, such as lids and labels, cannot be made from recycled plastic.  Circular Textiles

Drinks bottles are one of the top sources of plastic pollution on European beaches, the organisations noted and in October Dutch government inspectors said that the private sector is not doing enough to make sure more plastic bottles are collected.

“Using 100% recycled or recyclable claims or displaying nature images and green visuals that insinuate that plastic is environmentally friendly is misleading consumers.

Such claims however can be found on many bottles sold across Europe.

The problem is that there’s no guarantee it will be fully recycled once it’s in the bin,” said Beuc deputy director Ursula Pachl.  Circular Textiles


Coca Cola, Nestlé face scrutiny on recycled bottles claims

One million tonnes of plastic additives pollute the world’s oceans each year

A new study has revealed that approximately one million tonnes of plastic additives leak into the planet’s oceans every year.

The report – conducted by EA Earth Action – reveals the scale of pollution caused by these chemicals on an annual basis, with the organisation warning that, without substantial changes to production and waste management, the leakage of plastic additives into oceans and waterways could increase by over 50 per cent by 2040.

The study – entitled ‘Adding It Up’ – further highlights that a significant portion of this pollution – approximately 116 kilotonnes – originates from plastic packaging materials alone.  Circular Textiles

EA Earth Action stresses the potential dangers this could pose to human health – the vast majority of additives found are untested, unregulated and have been linked to various health conditions such as obesity, cancer and fertility issues.

Everyday items such as textiles or vehicle tires provided a considerable contribution to the leakage into oceans at 37 and 35 kilotonnes respectively.

Publishing the findings ahead of the third session of the UN Global Plastic Treaty Negotiations (INC-3) – aimed at formulating a legally binding international treaty to tackle plastic pollution – EA Earth Action is calling for increased transparency on the composition of plastic products alongside the scaling of effective waste management practices across the globe.  Circular Textiles

Julien Boucher, Founder of EA Earth Action commented: “The findings of our report underscore the urgency of adopting a comprehensive approach to confront the challenge of plastic pollution and combat additive leakage effectively.

“The widespread inclusion of potentially harmful additives in plastics, combined with substantial amounts of mismanaged plastic waste worldwide, has created the toxic threat we face today.

“Addressing the problem with additives must be a key talking point at INC-3 if we are to protect the ecosystem and human health from its detrimental effects. Further research into these chemical compounds is critical to addressing the threats from the whole spectrum of plastic pollution.”  Circular Textiles

Calls to reduce plastic additives in oceans

EA Earth Action is calling on policymakers to select materials that are both more reusable and recyclable to help tackle the plastics crisis and drive towards a more circular economy.

The organisation has also called for further research on how and why plastic additives leak into the environment and the effects this has on the human body to enable governments worldwide to construct more effective prevention strategies.

Maria Westerbos, Founder of the Plastic Soup Foundation and Co-founder of the Plastic Healthy Council said: “The results of EA Earth Action’s Adding it up report are a sobering reminder of how additives toxify both our planet and our bodies. We should never forget that all these chemicals are added to plastics and, in that way, are released into the entire ecosystem, including our own bodies. We now must see action.”


One million tonnes of plastic additives pollute the world’s oceans each year

APR and RecyClass Work to Align Design for Recycling Guidance
Continued efforts to drive harmonization of plastic packaging recyclability

The Association of Plastic Recyclers (APR) recently announced updates to the APR Design® Guide for Plastic Recyclability to align with RecyClass, the European based non-profit initiative focused on advancing plastics circularity. The APR Design® Guide will now state that 6% of EVOH is allowed for HDPE containers.  Circular Textiles

“Because the recycling process is very similar in both geographies, packaging will likely be processed similarly,” said Curt Cozart, APR COO. “Although some differences exist, APR Design® Guidance is nearly the same as RecyClass. The APR® Design Guide previously allowed for 5% EVOH in HDPE containers but will update to 6% to align with RecyClass Design for Recycling Guidelines.”

Through their respective Technical Committees, APR and RecyClass are accelerating global alignment of recyclability principles. In these groups, scientific data, gathered based on standardized testing protocols, is shared and serves as the base for discussions on uncovering the complexities of plastic packaging.  Circular Textiles

In addition to guidance on the use of EVOH in HDPE containers, guidance on the use of EVOH in PP containers has also been streamlined through this collaboration.

“To achieve a truly circular future for plastics, harmonization is essential,” commented Paolo Glerean, Chairman of RecyClass. “The real value of the collaboration between APR and RecyClass is evident in these latest recommendations, providing clearer guidance to the plastics industry globally. These joint efforts will allow the plastic packaging value chain to standardize their products on a larger scale and make the path towards the circular use of plastics more cost efficient.”

This activity is part of a continued effort between APR and RecyClass to reinforce their collaboration to drive worldwide harmonization of recyclability for all plastic packaging types, through a shared vision of science-based design for recycling guidelines and protocols for recyclability assessments.  Circular Textiles

This partnership will drive a unified, fact-based approach to recyclability, and bring clarity to the whole value chain.

The harmonization efforts are underway, taking into consideration the variations in recycling capabilities and infrastructure between the two regions.


APR and RecyClass Work to Align Design for Recycling Guidance Continued efforts to drive harmonization of plastic packaging recyclability

Flake sorting –  Demystifying Chemical Recycling: An Emerging Solution or a New Set of Challenges? 09-11-2023

Circular Textiles

Flake sorting –  Demystifying Chemical Recycling: An Emerging Solution or a New Set of Challenges? 09-11-2023

Flake sorting

Crude Oil Prices Trend 

Crude Oil Prices Trend by Polyestertime

Crude Oil Prices Trend by Polyestertime

Tomra presents new Innosort Flake

Its enhanced features enable simultaneous flake sorting by polymer, colour and transparency, achieving unmatched quality even from highly contaminated inputs.

With the introduction of the new Innosort Flake, Tomra provides the ideal flake sorting solution to help the industry recover more recyclable materials from any waste stream with maximum yield.  Flake sorting

Alberto Piovesan, Global Segment Manager Plastics at Tomra Recycling Sorting, explains: ”Given recycled content targets in Europe and elsewhere, the market needs to prepare for future demand. Recyclers need solutions to produce high-quality post-consumer recycled content in sufficient volumes.

At the same time, they strive for reliable sorting results and operational flexibility. With the new Innosort Flake, this is now possible.”  Flake sorting

Any colour, any polymer

Equipped with a powerful sensor combination, the new Innosort Flake sorts polymers by material type and colour, removing any impurities to create pure fractions.

Thanks to its advanced near-infrared (NIR) spectrometer, the machine precisely detects various polymers, allowing for the recovery of recyclable materials from highly contaminated infeed. With this technology, plastics recovered from mixed waste, for example, can be sorted for recycling, providing access to more recyclable materials that otherwise would be lost or downcycled for lower-grade applications. For instance, polyolefins (PO), such as polyethylene (PE) and polypropylene (PP), are often found comingled in the same waste stream. With the new Innosort Flake, mixed plastic fractions that have been shredded and washed can be sorted into clean fractions of PET, PP and PE and other materials that meet the quality requirements for extrusion and the creation of high-quality post-consumer recycled (PCR) content.  Flake sorting

Moreover, plant operators profit from the machine’s unmatched colour sorting performance. Its enhanced optics, with a changeable colour background and dual-sided high-resolution cameras, detect millions of colours and create single-colour fractions. Its high contrast imaging can even differentiate between white opaque and natural, transparent and translucent flakes, reducing material losses and maximizing yield.

Piovesan adds: ”The new Innosort Flake is designed to sort any colour, any polymer, at the same time. It levels the playing field for recyclers and gives them maximum flexibility to respond to the respective market demands. If an operator wants to purify PET this month and produce a clean blue PP next month, it is technically possible with the new machine. What’s more, it is cost-effective.”  Flake sorting


Flake sorting

Borealis, TotalEnergies Start Up Baystar PE Joint Venture

New unit brings Borealis’ proprietary Borstar PE technology to North America and completed the partners’ integrated petrochemicals venture

Borealis and TotalEnergies recently brought on stream their ambitious Baystar joint venture’s new 1.3-billion lb/yr (625,000 m.t.) in Pasadena, Texas, which brings to North America Borealis’ proprietary Borstar 3G technology and more than doubles the current production capacity at Baystar’s site.

Referred to as Bay 3, the unit completes the partners’ integrated petrochemicals venture, which includes the expanded Bayport PE facility, including two existing legacy PE units producing 881.8 million lb/yr, and the 2.2- billion lb/yr ethane cracker at the TotalEnergies Platform in Port Arthur, Texas, brought on stream in mid-2022.

Borstar technology has been shown to produce advanced value-added polymers with enhanced sustainability by enabling light-weighting and the incorporation of greater amounts of post-consumer recycled materials in a variety of end products, serving the energy, infrastructure and consumer products industries. Flake sorting

According to Baystar president, Diane Chamberlain, “Borstar technology enables our technical, production, and sales teams to collaborate in the creation of the highly customized products our customers require to remain competitive and meet consumer demands” She notes that these PFAS-free materials, enable more than 50% post-consumer recycled material in some end products. Also, due to their broad molecular weight distribution, Borstar PE offers superior physical properties with no need for process aids or additives.

Said Borealis CEO Thomas Gangl, “The arrival of Borealis’ proprietary Borstar technology in North America by way of Baystar marks, in line with our owners’ strategies, a crucial step for us in becoming a global leader in advanced and sustainable chemicals and material solutions,” Expanding and deepening our footprint through Baystar enables us to better serve customers and partners by offering improved access to Borstar based products produced right here in North America.”  Flake sorting


Flake sorting

Opinion: Time to clear up the ocean-bound plastic issue

We need to demystify ocean-bound plastic and educate people on its potential

We all know that plastic in our oceans is an environmentally devastating problem that is only getting worse. According to the UN’s Sustainable Development Goals Report, over 17 million tonnes of plastic entered the ocean in 2021, and that number is set to double or even triple by 2040. The collection and recycling of ocean-bound plastic has great potential to address this spread, but sadly, not enough businesses and consumers understand what it is, which has led to a general misunderstanding of the category.

For many, recycled ocean-bound plastic conjures up images of plastic being pulled directly from the sea or from around the neck of a sea turtle, which is simply not the case. Plastic pulled from the ocean has already been degraded by the salt and sun, making it very difficult to recycle at scale.  Flake sorting

At best, well-meaning companies try to engage with consumers by using this emotive but misleading imagery as a shorthand – and, at worst, bad actors in the industry deliberately conjure this image in order to greenwash or generate confusion.

Our operating definition of ocean-bound plastic is inspired by the pioneering work of Distinguished Professor of Environmental Engineering and 2022 MacArthur Fellow, Dr. Jenna Jambeck, and her team. They utilised various criteria in their research, and it is important to consider these factors together, rather than looking at one aspect of the problem in isolation.

The country or region lacks proper waste management infrastructure and collection incentives.

The infrastructure is being overwhelmed by population growth and/or increased tourism.

There is a significant risk to wildlife and biodiversity if plastic contaminates their ecosystem.  Flake sorting

It is found within 50km (30mi) distance of an ocean coastline or major waterway that feeds into the ocean.

The Prevented Ocean Plastic programme focuses on addressing these concerns in tandem, working with at-risk coastal communities to create an intervention before this plastic reaches our waterways, where it can cause immeasurable harm.


Flake sorting

We’re supporting legal action against Coca-Cola, Nestlé and Danone for their misleading claims about recycling

Along with the Environmental Coalition on Standards (ECOS), we’re supporting the Bureau Européen des Unions de Consommateurs (BEUC) in filing a legal complaint to the European Commission against three food and drink giants, over their use of misleading ‘100% recyclable’ and ‘100% recycled’ claims on plastic water bottles sold across Europe.

What’s the problem?

We’ve likely all seen slogans on plastic water bottles, claiming that the bottle is ‘100% recyclable’ or ‘100% recycled’. However, claims such as these, commonly found on plastic water bottles all over Europe, are either vague, factually incorrect, or not substantiated, and may suggest that bottles can be recycled in an infinite circular loop, which is simply not true.  Flake sorting

Evidence shows that there is no such thing as truly circular plastic and that recycling – while less harmful than other methods of waste disposal – cannot solve the worsening crisis of plastic pollution. The process of recycling actually continuously degrades the properties of plastic, making ‘infinite’ recycling impossible. In fact, only 9% of plastic ever made has been recycled, and production of new plastic is now expected to triple by 2060.

These claims about recycling also fail to account for all the parts of a plastic water bottle, such as lids and labels, which are not made from fully – if at all – recycled plastic and are much less likely to be effectively recycled.

The reality is that single-use plastic is neither circular nor sustainable. Recycling can never catch up with the sheer volume of plastic produced on our planet.

Rosa Pritchard, ClientEarth lawyer

Quite simply, we are producing too much plastic, and people and planet are drowning in it. Recycling is not a satisfactory solution, and companies shouldn’t be implying to consumers that plastic bottles are ever a sustainable choice.  Flake sorting

What’s the legal action?

We’ve supported BEUC in raising an ‘external alert’ to the European Commission and the Consumer Protection Cooperation Network against Coca-Cola, Nestlé and Danone for suspected widespread infringement of consumer protection law.

An ‘external alert’ is an important tool that allows designated entities – such as BEUC – to submit complaints to the Consumer Protection Cooperation network and the European Commission, meaning they can submit evidence of business practices they suspect infringe consumer protection law directly to the enforcement authorities.

The external alert submitted here argues that the recycling statements on plastic water bottles, which are often reinforced by ‘green’ imagery and generic environmental catchphrases, may mislead consumers into viewing single-use bottles as a ‘sustainable’ choice, when this simply isn’t the case. The most sustainable way to consume water is using a refillable bottle and drinking tap water.  Flake sorting

The evidence is clear – plastic water bottles are simply not recycled again and again to become new bottles in Europe. A ‘100%’ recycling rate for bottles is technically not possible and, just because bottles are made with recycled plastic, does not mean they don’t harm people and the planet. Where waste can be recycled, consumers should keep up their good work. Recycling is less harmful than other disposal methods, like incineration or landfill. But it’s important companies don’t portray recycling as a silver bullet to the plastic crisis. Instead they need to focus efforts on reducing plastic at source. Companies are in a unique position to change how we consume but currently these claims – which we consider to be misleading – are making it hard for consumers to make good environmental choices.

Is recycling worthwhile?

Recycling is less harmful than plastic being incinerated or going into landfill. And consumers should still recycle wherever possible.  Flake sorting

But, the ‘recyclability’ of a plastic water bottle depends on lots of different external factors, such as local infrastructure when it enters the recycling system. In the EU, the recycling rate for plastic bottles is approximately 50%, with only 30% used to make new bottles. The remainder goes towards products like textiles, which are generally unrecyclable and more likely to end up in landfill, or an incinerator, causing pollution and contributing to climate change.

The combined effect of the claims on these bottles about recyclability risks persuading consumers across Europe that single-use plastic packaging does not harm the environment, while distracting attention from the urgent need to hugely reduce plastic production across the globe.  Flake sorting


We’re supporting legal action against Coca-Cola, Nestlé and Danone for their misleading claims about recycling

The escalating plastic pollution crisis and inefficiencies in the plastic recycling system have turned many against single-use plastics and led to national and state bans on some plastic packaging. Now, the fossil fuel and petrochemical industries have launched a category of plastic processing technology called chemical recycling or advanced recycling. The plastic industry describes it as a potential panacea that can clean up millions of tons of plastic waste produced annually. Is it everything claimed?

The Ocean Conservancy recently hosted a forum to discuss their findings after examining chemical recycling. The implications of this technology are intricate, and the technology is still evolving. However, the early evidence is that chemical recycling still requires immense energy, generating large amounts of planet-warming CO2. At the same time, it does not significantly reduce the volume of plastic toxins. Flake sorting

“Chemical recycling is an umbrella term that captures a suite of disparate technologies,” said Dr. Anja Brandon, Associate Director of U.S. Plastics Policy at the Ocean Conservancy. She suggested that fossil fuel and plastic companies fudge these terms to confuse consumers and policymakers. “These terms are constantly changing. Its ‘chemical recycling,’ ‘advanced recycling,’ ‘molecular recycling,’ and ‘renewable technologies.’ Different companies all use different terms.”

One clear message from the event was the importance of reducing the use of plastic. As much as 40% of plastic becomes single-use packaging, which accounts for much of the plastic pollution in the oceans and landfills. Flake sorting

“Recycling mitigates the harm of waste and extraction, but not as much, of course, as reuse and certainly reduction is our primary strategy,” said Lynn Hoffman, Co-President of Eureka Recycling in Minneapolis and National Coordinator for the Alliance for Mission-Based Recyclers.

Hoffman noted that mechanical recycling is not without its environmental flaws but suggests that most plastics, especially single-use plastic packaging, are not recycled because of the broken economics of today’s system.

It’s often cheaper to use virgin plastic because of the complexity and cost of sorting and processing plastic. Flake sorting


 Demystifying Chemical Recycling: An Emerging Solution or a New Set of Challenges?

Creating a Plastics Circular Economy in the Food Industry

Recently, there has been a push for the food industry to trade plastics for new packaging alternatives. However, as industry leaders work together to lower the carbon footprint of food packaging, it’s imperative to take a fact-based approach to the sometimes polarizing topic of plastic.

The concept of simply eliminating so-called problematic materials sounds like a quick and easy solution; however, these reflex reactions to misguided findings and policies just further complicate the problem. In most cases, this shifts the issue to a new material, which has its own challenges.  Flake sorting

The design of plastic materials and recycling technologies has continued to advance, making plastics, such as polystyrene (PS), far more eco-friendly than many people realize.

What makes a material sustainable?

One way to understand the full impact and environmental costs of a product is by using a lifecycle assessment, or LCA. A full LCA examines each step of the product’s entire cycle. It accounts for all energy, raw materials, and emissions involved at each stage of a product’s life. Only when we understand a product’s full life cycle can we accurately compare our options.

However, once a product is produced, that’s not the end of its existence. Additional inputs often add to its life cycle impact at other stages along the way to fulfilling its purpose. For example – shipping and distribution. The impact of shipping lighter materials, such as plastic, will be significantly lower as opposed to heavier materials, like metal or glass, due to the reduced fuel use.  Flake sorting

While an LCA is all-inclusive, there are methods to break down the assessment into separate, trackable portions. The product’s carbon footprint (PCF), for example, is specifically the equivalent amount of CO2 that is released into the earth’s atmosphere as a result of a product’s production, use, and afterlife. Product carbon footprint can be a very useful metric for estimating a product’s environmental impact since CO2 is a major contributor to climate change.

After use, the final resting place for the material contributes to the footprint, too. This can help demonstrate the benefits of circularity. If materials end up in landfills, each step of its life and all the inputs used to make that product need to be repeated and made again. However, if it can be recycled, the original inputs used to create the product stay in the value chain, reducing the need for that environmental impact to be repeated. Closing the loop with waste prevention and recycling allow for the life cycle of this valuable material to be infinite. To be repurposed and reused, again, and again. Flake sorting


Creating a Plastics Circular Economy in the Food Industry

Lenzing Advances Circularity Through Strategic Industry Partnerships and Value Chain Innovation

A strong commitment to achieving textile circularity, forging industry partnerships, and realizing value chain innovation are infused in Lenzing and the TENCEL™ brand’s strategic DNA. This year, the company continued to introduce exciting collaborations and initiatives, launching innovative products and creating added value for supply chain partners.

Incorporating TENCEL™ branded fibers, Japanese denim mill Kaihara and Lenzing have elevated their long-standing partnership this year, developing several innovative denim garments with finishing technology by Jeanologia. The capsule collection showcases Kaihara’s craftsmanship and the versatility of TENCEL™ fibers in high-end denim fashion worldwide.  Flake sorting

Lenzing and Kentaur also launched a collection of uniforms for culinary professions. These innovative uniforms are made from a blend of 50% TENCEL™ branded lyocell fibers with REFIBRA™ technology and 50% recycled polyester, to give textile waste a second life while maintaining a high level of quality and comfort.

Regarding fibers, Lenzing has extended the REFIBRA™ technology to LENZING™ ECOVERO™ branded viscose fibers with 20% of recycled content, and announced the expansion of the production of their EU Ecolabel certified[1] responsible viscose fibers at Lenzing’s Purwakarta site in Indonesia. The site will also produce LENZING™ ECOVERO™ black specialty fibers by the end of 2023.  Flake sorting

To address the industry’s increasing supply chain complexities, Lenzing partnered with supply chain solutions company project44™ to pioneer a real-time ocean shipment tracker that aims to enhance the transparency of the global fiber supply chain through greater carbon emission visibility. The tracker empowers Lenzing’s customers with accurate real-time insights on fiber orders, supporting Lenzing’s commitment to digital transformation and supply chain transparency in textiles and nonwovens.

The launch of the pilot “Start with the Original” campaign in China strives to enhance awareness of the correct usage of trademarks to safeguard industry partners and consumers. Harold Weghorst, Global Vice President of Marketing & Branding, Lenzing AG reaffirmed the education and training initiatives of the campaign that will help sustain a healthy business environment in the domestic ecosystem.  Flake sorting


Lenzing Advances Circularity Through Strategic Industry Partnerships and Value Chain Innovation

PCR packaging – Mura Technology’s flagship advanced plastics recycling plant opens in Teesside 08-11-2023

Flake sorting

1,000 km battery – Polyolefins producer details its catalytic pyrolysis process 19-10-2023

1,000 km battery

Crude Oil Prices Trend 

Crude Oil Prices Trend by Polyestertime

Crude Oil Prices Trend by Polyestertime

DOMO Chemicals boosts sustainable portfolio and pioneering partnerships at Fakuma 2023

  • DOMO spotlights TECHNYL®’s 70 years of innovation with latest sustainable polyamide offering
  • Premiere of partnerships with MITSUBISHI and MARTOR demonstrate power of collaboration on sustainability journey
  • DOMO commits to double share of sales in circular solutions

Leading engineered materials provider DOMO is presenting groundbreaking polyamide solutions at Fakuma 2023 (Hall B4, Stand 4216). DOMO’s globally renowned TECHNYL® brand celebrates 70 years of innovation in flame and temperature resistance, light-weighting, as well as sustainable polyamide solutions at the booth.

As the owner of the premier sustainable engineered materials brand TECHNYL® 4EARTH®, DOMO will unveil new formulations at Fakuma in collaboration with internationally prominent customers including MITSUBISHI Chemical Group and MARTOR.

DOMO’s latest partnerships further testify the company’s ambition of doubling sustainable sales by 2030.  1,000 km battery

MITSUBISHI’s greener power tools

In the field of power tools and home appliances, a pioneering experimental solution will be announced at Fakuma 2023. It is the result of a joint project between DOMO and MITSUBISHI Chemical Group (MCG), Performance Polymers Division, and consists of the first combination of PA6/TPE that combines excellent adhesion and haptics with sustainability through the use of recycled raw materials and unlimited color choices.

Both TECHNYL® 4EARTH® (PA6) and TEFABLOC™ (TPE-S) have a 30% recycled content matrix.

“We were looking for a recycled polyamide grade able to meet the requirements of the most common power tool colors,” says Fabien Resweber, Sales and Marketing manager, MITSUBISHI Chemical Group / Performance Polymers EMEA. “Customized color is an important part of product design features because it enhances brand recognition with the end consumer. With DOMO we have found the right partner. With their broad portfolio of sustainable polyamides, we have been able to find the right solution that will synergize the value of our new circular TPE compound for two-component injection molding applications with polyamides.”  1,000 km battery

Delphine Huguenot, Commercial Director Engineered Materials, DOMO, embraces the recent partnership with MITSUBISHI: “It’s imperative for us to accompany and empower our customers and partners on our shared ambition to reduce our product carbon footprint. Next to MITSUBISHI, we are proud to have joined forces with MARTOR on the production of sustainable safety knives in the consumer goods segment. Ultimately, we want to double our share of sales in circular solutions by 2030, which includes our leading TECHNYL® 4EARTH® sustainable polyamide.”

MARTOR’s more sustainable safety knives

For MARTOR, a leading maker of premium cutting tools, DOMO’s recycled polyamide solutions will enable it to produce its new ECO line of sustainable safety knives. DOMO’s PA6-based TECHNYL® 4EARTH® materials will be used to mold MARTOR’s new ECO line of safety knives. Already existing models previously developed with prime material will further expand the ECO-series. “Making use of recycled raw materials with certified environmental benefits is a first achievement,” said Sylke Wendt, Head of Product Management at MARTOR. “The next phase will be the reuse of end-of-life knives to become truly circular.”  1,000 km battery

At the booth, DOMO will also present the latest progress of TECHNYL® in the development of drinking and non-drinking water management solutions for PPA replacement in sanitary, heating and home appliances. In addition, visitors can expect breakthrough solutions supporting mobility electrification with newly-launched high voltage, electro-friendly and cooling grades.

Come celebrate DOMO’s significant strides in the chemical sector, setting a precedent for industry sustainability, at Fakuma 2023, Hall B4, Stand 4216. Please also join the DOMO team for a drinks reception on October 18 starting at 5 pm.

1,000 km battery

NIO’s 1,000 km battery will soon be across the entire lineup

The company has presented the documentation to adopt 150 kWh semi-solid state batteries on 11 models
Last spring, NIO announced that it was ready to fit its 1,000 km range battery in three of the electric models it produces. The batteries in question, made by the Chinese specialist WeLion, have a capacity of 150 kWh and are equipped with a semi-solid electrolyte.
Today, as reported by the Chinese automotive news site CNEVPost, the Shanghai company has presented all the documentation to the Chinese Ministry of Industry and Technology to be able to adopt that type of battery on 11 models.
Available across the entire range
The NIO range is constantly evolving. Leaving aside the EP9 supercar, dating back to 2016, the company initially put two SUVs on the market – the ES8 and the ES6 – and two sedans, the ET5 (also available with a station wagon body) and the ET7. It is now expanding the offer with other SUVs (EC6, ES7, EC7).  1,000 km battery

The NIO ET5, competitor of the Tesla Model 3
According to local media reports, the request made to the ministry would be formulated to adopt the 150 kWh battery on 11 models. Of these, 2 would be sedans (the ET5 and ET7, in all likelihood) and 9 would be SUVs. Which means that the range will be expanded with the arrival of new cars with this type of bodywork.
An interchangeable battery
If the ministry accepts the request, NIO will then be able to fit its 1,000 km battery on all cars on the market, beating the competition to the punch. The battery with semi-solid state electrolyte was first announced in January 2021, and WeLion started its production in November last year. Starting from the summer it has been fitted on some models of the company, which is adopting it more and more widely.
The NIO ES8: large SUV recently subjected to restyling
An interesting thing about this type of battery is the fact that it is interchangeable with the others proposed by NIO on its electric ones. It has the same dimensions as a traditional pack and the same attachments.  1,000 km battery
NIO, as is known, believes more than anyone in battery swap technology and has put into operation, mainly in China but not only, over 1,000 automated stations for on-the-fly battery changes. At these stations, by paying a special subscription, the company’s customers will be able to replace their battery with the 150 kWh one even for a limited period of time. Maybe for when they need to face a long journey.

1,000 km battery

Polyolefins producer details its catalytic pyrolysis process

LyondellBasell says its chemical recycling technology presents environmental benefits over competing pyrolysis processes, particularly because the company can use both the liquid and gas outputs as feedstock for new plastics. 

One of the world’s largest polyolefins producers, LyondellBasell, held a Sept. 26 webinar to showcase MoReTec, which stands for Molecular Recycling Technology. That’s the name of its proprietary chemical recycling technology, which breaks down post-consumer scrap plastics to produce chemicals that are used to make new plastics.

While hyping the benefits of MoReTec, the executives also acknowledged the current-day shortcomings of chemical recycling – which they called “advanced recycling” – in general.

“When we look at the current landscape for advanced recycling, we see it’s in early stage and limited, and it’s faced with higher costs than mechanical recycling.

It’s struggling to reach commercial scale as it goes through its learning curve, and it has lower energy and carbon efficiency,” said Yvonne van der Laan, executive vice president of Circular and Low Carbon Solutions at LyondellBasell.  1,000 km battery

“As LyondellBasell, we recognize these challenges and are tackling them piece by piece with our integrated hub approach that allows us to build scale, reduce operating costs and capture value.”

During the webinar, which was broadcast from LyondellBasell’s R&D Center in Ferrara, Italy, where the company has a semi-industrial-scale MoReTec plant, van der Laan and Jim Seward, executive vice president and chief innovation officer at the company, explained the competitive advantages of the technology, as well as plans to scale it up in Europe and the U.S.  1,000 km battery

Catalyst reduces energy usage

Pyrolysis, which involves heating plastic in the absence of oxygen, breaks polymer chains in plastics to produce gas and liquid fractions, as well as some percentage of solid contaminants. The gas is often burned to produce energy to heat the process. Environmentalists have pointed to that reduced yield and combustion when they criticize pyrolysis as inefficient and polluting.

“Pyrolysis is actually a fairly relatively intensive-energy-using process, but we are applying our long history of catalyst development in this space as well, looking at how we can convert polymers back to monomers,” Seward said in his presentation.

The MoReTec pyrolysis process is able to use the gas fraction to produce new plastics, as well as the liquid, further displacing fossil-based feedstocks, he said. By using its catalyst, MoReTec lowers reaction temperatures, which reduces energy usage, and improves the plastic-to-plastic yield.  1,000 km battery

Seward said that recovering gas for use as feedstock rather than fuel yields Scope 1 greenhouse gas generation benefits, using electrically heated systems and lower temperatures lower Scope 2 emissions, and replacing fossil-based feedstocks with scrap plastic reduces Scope 3 emissions.

“Combining all of this, we believe the pyrolysis feedstock produced from MoReTec has less than 50% of the carbon footprint of fossil-based feedstocks,” Seward said.

He acknowledged that purification of the pyrolysis oil and gas outputs will be required if they make up higher and higher percentages of the feedstock going into the company’s ethylene crackers, where they replace naphtha and natural gas liquids.

“This is an element of our industrialization path,” he said.  1,000 km battery

The crackers then process the inputs into monomers, which are fed to existing polymerization plants to be made into new plastics for use in demanding applications, such as food and healthcare packaging, according to the presentation.

Plans for scaling up 

In terms of scaling up, Seward said LyondellBasell is first looking to build a plant near Cologne, Germany, capable of processing 50,000 tons per year, with a final investment decision on that project likely to come before the end of this year. If approved, that plant would be scheduled to come on-line in 2025.

Then, the company will likely move its attention to a larger MoReTec unit – one capable of producing 100,000 tons per year – at its Houston refinery, he said.

“We anticipate MoReTec units within each of our integrated hubs,” he said.

Van der Lann said LyondellBasell currently plans to continue operating its Houston refinery until the end of the first quarter of 2025. Before that date, the company will decide on repurposing assets from the refinery to create MoReTec 2 there.  1,000 km battery

Globally, LyondellBasell has a goal of marketing 2 million tons of circular and renewable-based polymers by 2030. They’re sold under the company’s Circular brand portfolio.

Last year, the company sold less than 80,000 tons of Circulen plastics, far short of its goal.


1,000 km battery

LyondellBasell Acquires Stake in De Paauw Sustainable Resources

LyondellBasell today announced it has acquired a 50% stake in Rodepa Vastgoed B.V., the holding company of De Paauw Sustainable Resources (“DPSR”). The Dutch plastic waste recycling company is involved in the sourcing, processing and trading of post-consumer and post-industrial plastic packaging waste. DPSR operates production facilities located in Hengelo and Enschede, the Netherlands, with an annual processing capacity equivalent to the amount of plastic packaging waste generated by over 1.7 million Dutch citizens per year.

“Investing in DPSR aligns with our strategy to increase our access to plastic waste feedstock, which supports  our  integrated hub strategy that allows us to build scale and expand our production and offering of CirculenRecover products,” says Yvonne van der Laan, LyondellBasell executive vice president, Circular and Low Carbon Solutions. “Demand for recycled plastics continues to grow as consumers and brand owners ask for sustainable materials.  1,000 km battery

Through this collaboration, we can further expand our CirculenRecover portfolio of mechanically recycled polymers, creating solutions for our customers”.

DPSR was founded in 1956 and has over time built up an extensive network of plastics waste sources. DPSR has grown into a leading recycler in the Benelux region, processing plastic waste into recycled polypropylene (PP) and low-density polyethylene (LDPE) materials.

“With a great team of driven employees, we have steadily built our business over the years by responsibly and carefully finding new use for used plastics,” says Roy de Paauw, CEO of DPSR. “I greatly appreciate the cooperation we had with ING CI. I am proud that LyondellBasell is participating in our company and that we are now joining forces to recycle even more plastic waste into high-quality raw material.”  1,000 km battery

LyondellBasell acquired its 50% share from DPSR CEO Roy de Paauw and ING Corporate Investments, the investment branch of the Dutch multinational banking and financial services corporation ING Group.

“Our investment in DPSR always fitted perfectly in the sustainable ambitions of ING and over the past years ING Corporate Investments has been able to work together with DPSR’s management team in further professionalizing the organization, expanding its production platform and preparing the company to realize future sustainable growth. We are extremely glad to see DPSR has found a sound new strategic partner in LyondellBasell for entering its next growth phase after all that has been achieved so far,” says Mathijs Henzen, Investment Director at ING Corporate Investments.  1,000 km battery

1,000 km battery

Could Stellantis Partner with Chinese Leapmotor for Electric Vehicle Platforms?

Recent reports suggest that Stellantis is edging closer to striking a deal with Chinese electric vehicle manufacturer Leapmotor to utilize their platforms for electric cars. While Chinese electric cars may pose a challenge to Western automotive giants, they also offer an exciting opportunity for growth and advancement in future vehicle models. Chinese manufacturers boast readily available technologies, including platforms and batteries, which can serve as the foundation for creating new product lines. This line of thinking appears to be gaining traction within Stellantis as well.

According to information from CarNewsChina, Stellantis, under the leadership of Carlos Tavares, is poised to finalize an agreement with Leapmotor, allowing them to license the LEAP 3.0 platform. This platform is designed for both fully electric models and series plug-in hybrids.  1,000 km battery

According to these rumors, Stellantis may also consider becoming a shareholder in Leapmotor, giving them the opportunity to leverage these new technologies initially for the Chinese market and potentially expanding into other countries.

The LEAP 3.0 platform made its debut in July in China and was officially showcased at the 2023 Munich Motor Show in September with the introduction of the Leapmotor C10, a midsize SUV presented by the Chinese startup as its first global model. The C10 can utilize either a fully electric powertrain or an EREV (Extended-Range Electric Vehicle), where the car is primarily driven by an electric motor with thermal unit-powered batteries, resembling the concept seen in the Mazda MX-30 R-EV. It’s more accurately described as a series hybrid.  1,000 km battery

As of now, neither of the involved parties has officially confirmed or denied these rumors. However, it’s worth noting the recent statement from Leapmotor’s CEO, Zhu Jiangming, who stated, “We don’t want to be just an electric car brand but also a supplier of vital technologies for electric vehicles.” Zhu also mentioned ongoing negotiations with two manufacturers, although no names were specified.

If this agreement does come to fruition, Stellantis would be following in the footsteps of Audi and Volkswagen. Audi entered into an agreement with SAIC to utilize the iO Origin platform for electric vehicles in China, while Volkswagen is set to purchase 5% of Xpeng and secure a license to use the Edward platform, serving as the foundation for two upcoming models catering to the Eastern market.  1,000 km batteryCould Stellantis Partner with Chinese Leapmotor for Electric Vehicle Platforms?

Electric cars, Volkswagen stops production, now it’s a black crisis

Black crisis, very black indeed. The future of electric cars is becoming increasingly uncertain, so much so that even Volkswagen is doing an about-face and interrupting production due to an excessive drop in demand. The sector is proving to be too volatile. There are those who claim that the problem is the few charging stations present in our country, but at this point there could be multiple faults.
Stop production
The electric car sector is not taking off, in fact it risks going backwards. In our country there is a strong shortage of charging stations, furthermore the list prices of these cars are still too high for our families. Meanwhile, politics continues to impose limits and pushes towards this sector.  1,000 km battery
The objective is to eliminate the sale of combustion engine cars by 2035. An imposition that risks being unworkable, given that at the moment zero-emission cars continue to have a highly fluctuating market. If we thought that the crisis was limited only to our country, we were very wrong, given that in Germany Volkswagen has decided to stop production. In reality, this was to be expected, given that a sad time ago the German car manufacturer had clearly spoken of an electric crisis. Specifically, the company has stopped production of some zero-emission models. Two factories in the country stop. Specifically, stop the production of Cupra Born and Volkswagen ID.3 as demand has fallen sharply. At the moment, what we know is that the factories will stop for two weeks, limited to the assembly activities (which are also limited) of the two battery-powered models of the Volkswagen Group. Rumors state that at the moment only one assembly line will remain active in order to slow down work. However, the production of the Audi Q4 e-tron, Q4 Sportback e-tron, Volkswagen ID.4 and ID.5 will continue without changes, at least for the moment. However, we cannot know what will happen after this stop, whether it will be extended or whether production activities will resume.  1,000 km battery
Electric cars in crisis
It is another heavy blow to sustainability. After the debacle of solar cars, with interesting companies admitting the flop and focusing on something else, comes another blow to the green economy which made mobility one of the essential musts for a more eco-sustainable world. And to think that just a few weeks ago we reported on Volvo’s courageous decision to say goodbye to diesel engines by discontinuing their sale starting next year. However, Volkswagen’s decision deserves all the attention it deserves, given that we are talking about a production that represents 70% of its specific sector, that of electric cars, in fact. As we were saying, the reasons can be attributed to the sharp decline in demand for the two models produced by the German company. One wonders why this drastic drop in demand. Even in this case the reasons for the contraction are quite clear. Incentives in Germany for the purchase of electric cars have been significantly reduced and in some cases disappeared completely.
In fact, in the country the incentives intended for private individuals will go from 4,500 to 3,000 euros starting from 1 January 2024. Furthermore, since last September 1st the Government has stopped providing the bonus for the purchase of electric cars. In short, a chain reaction that led to an inevitable decrease in demand from the Germans. This is a significant problem which also has repercussions on the world of work, given that the company has had to cut 296 jobs.  1,000 km battery
Electric cars, Volkswagen stops production, now it's a black crisis

How Coca-Cola is supporting the circular economy

An ambitious sustainable packaging strategy, World Without Waste, was launched in 2018 by The Coca-Cola Company. This strategy aims to create systemic change by focusing on the circular economy for packaging, from how bottles and cans are designed and manufactured to how they’re recycled and reused.

Simply put, World Without Waste is a global sustainable packaging strategy focused on three primary goals: Design, Collect and Partner.  1,000 km battery

The Coca-Cola Company (Coca-Cola) has stated that it has a responsibility to help solve the global plastic waste crisis by leveraging its scale and reach across markets to reach its sustainability goals, suppress waste pollution, and reduce its carbon footprint.

“Sustainability is core to our business strategy and focuses on the interconnection between water, packaging, and climate. To realise these goals, we invest in solutions and partnerships across industry, governments, and society.

“By 2030, Coca-Cola’s manufacturing facilities, that we designate as high priority leadership locations, we will reduce, reuse, recycle and replenish the water used in operations in the local correlated watersheds for beneficial social, economic and/or uses by other stakeholders and nature,” says Babongile Mandela, director of public affairs, communication and sustainability at Coca-Cola.  1,000 km battery


In South Africa, Coca-Cola is a member of the PET Recycling Company (Petco), an extended producer responsibility (EPR) organisation for PET, since 2004 to support collection.

The partnership and membership in Petco create economic opportunities by supporting the recycling sector to increase collection efforts and divert packaging waste from landfills.

Petco’s published 2022 Annual Report identifies the collection and recycling rates for the products its members have registered with the organisation.

That includes Coca-Cola.  1,000 km battery

The report shows that 121,369 tonnes of packaging was placed on the market by all Petco members in 2022. Of this, 83,967 tonnes (69%) of post-consumer packaging were collected for recycling, and 79,571 tonnes were recycled – achieving a 66% recycling rate. According to the Waste Pickers Association, South Africa has approximately 90,000 informal waste pickers who play an increasingly important role in waste management.


How Coca-Cola is supporting the circular economy

Biodegradable plastic – Biodegradable plastic: now flies will produce it 18-10-2023

1,000 km battery

Recycling Processes Petrochemicals – Petrochemicals rPET PA6 – Will petrochemicals rise with oil?  24-07-2023

Recycling Processes Petrochemicals

Petrochemicals rPET PA6 – Will petrochemicals rise with oil? 


Recycling Processes Petrochemicals

Crude Oil Prices Trend 

Crude Oil Prices Trend by Polyestertime

Crude Oil Prices Trend by Polyestertime

Balancing High Oil Prices and Production Strategies: A Closer Look


Since the invasion of Ukraine in 2022, the global oil industry has been grappling with soaring prices, reaching levels not seen in decades. This surge in oil prices prompted the Biden administration to urge US producers and OPEC to increase production to stabilize prices. However, differing approaches by major players like Saudi Arabia and the US shale sector have led to complex dynamics in the oil market. This article delves into the factors influencing oil production, the role of US shale oil, and the potential impact on global supply and prices.

US Shale Oil Sector’s Response

In response to President Biden’s call, the US shale oil sector has been proactive. The US Energy Information Administration predicts that total US production is expected to reach 12.61 million barrels per day by 2023, surpassing the previous record of 12.3 million barrels per day in 2019.

This surge in production is driven by increased investment and advancements in technology, making extraction more cost-effective. Recycling Processes Petrochemicals

Challenges in US Shale Oil Growth

Despite the optimistic outlook, US shale oil growth is not without hurdles. Fluctuating crude oil inventories and rising production rates, which have increased by 9% annually, have put pressure on OPEC’s efforts to limit supplies and control prices. Saudi Arabia’s decision to cut production by an additional one million barrels per day in July further complicates the situation.

However, the pace of growth in the US shale oil sector may be slower than anticipated. Several factors contribute to this trend, including the focus of shale oil companies on capital discipline and increasing returns to shareholders instead of aggressive expansion. Although the break-even costs for most domestic producers hover around $90 per barrel, the challenges of rising costs, labor shortages, and equipment constraints have hindered rapid production ramp-up. Recycling Processes Petrochemicals

Hydraulic Fracturing: A Potential Game-Changer

To combat these challenges, some oil giants, like ExxonMobil, are pinning their hopes on hydraulic fracturing (fracking) as a game-changing technology. ExxonMobil’s CEO, Darren Woods, believes that hydraulic fracturing can potentially double production from existing wells and extend their lifespan. This innovative technology is not only up to 40% cheaper than drilling new wells but also has the potential to deliver two to three times more oil than older wells, according to COO Garrett Fowler. Recycling Processes Petrochemicals

The Complex Role of OPEC+

As the US shale oil sector aims to boost production, OPEC and its allies are faced with crucial decisions to maintain supply restrictions to stabilize oil prices. Saudi Arabia, being a prominent OPEC member, has stated that the price of oil must be at least $81 per barrel to meet this year’s budget targets. Balancing the interests of OPEC+ members and global market demands is a challenging task that will have far-reaching implications for the oil industry.

The Impact on Global Oil Supply and Prices

The interplay between US shale oil growth and OPEC+ production cuts can significantly influence global oil supply and prices. Moderate increases in US oil production, coupled with production cuts by OPEC+, might lead to limited crude supplies in the coming months and potentially drive prices higher.

It is essential for policymakers and industry leaders to closely monitor these developments to avoid undue volatility in the energy markets. Recycling Processes Petrochemicals


As the world grapples with high oil prices and attempts to boost production, the global oil industry stands at a critical juncture. The US shale oil sector has shown promise in responding to the call for increased production, driven by technological advancements and investments. However, challenges such as capital discipline, labor shortages, and equipment constraints have slowed down the pace of growth.

In parallel, OPEC+ faces the delicate task of balancing production cuts to stabilize prices while meeting budget targets. The ongoing geopolitical dynamics and technological innovations, such as hydraulic fracturing, further add complexity to the oil market’s trajectory.

Moving forward, collaboration and effective communication between major oil-producing nations and industry stakeholders will be vital to ensure a stable and sustainable energy future for the world. Recycling Processes Petrochemicals

Recycling Processes Petrochemicals

Sikora’s Purity Concept V: Enhancing Quality Control and Efficiency in Recycling Processes


The RCS Group, a renowned medium-sized recycling and waste management company in Germany, has been leading the charge in sustainable practices since its establishment in 1985. With three core business segments, RCS Entsorgung GmbH, RCS Rohstoffverwertung GmbH, and RCS Plastics GmbH, the company is committed to ensuring high-quality recycling and waste processing. To maintain the food-grade quality of recycled materials, the RCS Group has partnered with Sikora, a cutting-edge technology provider, utilizing their Purity Concept V inspection and analysis system.

Importance of Quality Control in Recycling Processes

The significance of stringent quality control in recycling cannot be overstated. Impurities in recycled materials can have severe consequences, particularly in industries like non-food plastics processing and beverage bottle manufacturing. For instance, utilizing contaminated rPET pellets in bottle production can lead to defects and malfunctions, compromising both appearance and functionality, and potentially resulting in bottles that may even burst. Recycling Processes Petrochemicals

Enter Sikora’s Purity Concept V

Recognizing the challenges in maintaining uncompromised quality, the RCS Group turned to Sikora’s Purity Concept V to streamline their quality control process. The system offers rapid, reliable, and precise inspection, making it an invaluable asset for identifying impurities in rPET pellets. Instead of the time-consuming manual sorting that used to take up to 45 minutes, the Purity Concept V now achieves the same task in just 30 seconds, greatly saving time and resources.

Advantages of Purity Concept V

Cedric Steeg, an employee in Quality Assurance at RCS, praises the Purity Concept V, highlighting its efficiency in identifying contaminants within seconds. He further emphasizes that the system provides clear and reproducible results, a critical aspect in maintaining consistency and adhering to stringent quality standards. With the ability to detect black spots as small as 50µm, the system surpasses the limitations of human visual inspection, enhancing the overall quality control process. Recycling Processes Petrochemicals

Comprehensive Quality Control

The RCS Group has established its own defined limits for the quality of recycled materials. The Purity Concept V allows the company to verify whether each batch of rPET pellets meets these criteria immediately after analysis. The test results are thoroughly documented and stored for a period of five years, ensuring complete traceability and compliance with regulations. Additionally, beyond detecting black spots, RCS also utilizes the system to inspect for butterfly grains, which helps identify potential mechanical issues during granulation leading to undesired deformations.

Sikora’s Expertise and Partnership

Aside from the remarkable performance of the Purity Concept V, the RCS Group was equally impressed with Sikora’s pre-investment consultation and their outstanding service during the commissioning process. The collaborative relationship between the two organizations highlights the shared commitment to advancing recycling practices and the pursuit of sustainable solutions. Recycling Processes Petrochemicals


Sikora’s Purity Concept V has emerged as an indispensable tool in the RCS Group’s quality control process, elevating their recycling and waste management endeavors to new heights. By swiftly and accurately identifying impurities in rPET pellets, the system enables RCS to uphold the highest standards in recycled material production. Through their successful partnership, Sikora and RCS continue to make strides in advancing recycling technology and contributing to a more sustainable future.

Recycling Processes Petrochemicals

6 Industries that Chemical Recycling is Poised to Disrupt

Chemical recycling is a process in which waste materials are broken down into their original chemical compounds and reused or repurposed. It’s an efficient and sustainable way to reduce the amount of waste sent to landfills. Using chemical recycling, valuable materials that have already been used can be recovered for reuse without producing any additional environmental damage. Recycling Processes Petrochemicals

Gain more insights by watching our Silicon Valley June Summit

Unlike mechanical recycling, which can be limited by material quality degradation, chemical recycling is a viable solution to convert waste into usable resources and address the problems caused by increasing waste production. This blog delves into six diverse industries where chemical recycling holds tremendous potential, creating new opportunities for waste management and promoting sustainable practic

How the waste can become sustainable packaging, recycled construction materials, and more Recycling Processes Petrochemicals


According to Statista, in recent years, the use of plastics worldwide has increased significantly and is now estimated at 460m metric tons. Packaging is the largest plastics-consuming segment, which comprises approximately 31% of the total. Watch and learn about Plug and Play’s effort to end plastic wast

Chemical recycling has the potential to greatly reduce the amount of plastic waste generated by the packaging industry. The technology can break down single-use packaging materials into valuable monomers and polymers. They can be used to produce new, high-quality packaging materials, reducing the need for virgin plastic production and minimizing plastic waste leakage into the environment Recycling Processes Petrochemicals

Biofabrik is a company that develops technologies in green chemicals and waste to energy. One of its technologies, WASTX Plastic, can be applied to food packaging by processing multi-layer films and contaminants such as paper labels and food residues.

Besides food packaging, chemical recycling is gaining traction in beauty and personal care as leading brands are now incorporating recycled material into their packaging. For example, cosmetics companies like KAO, Shiseido, and Amorepacific are all focusing on increasing the use of recycled plastic in their packaging and creating high-quality post-consumer recycled materials through chemical recycling technology.


Chemical recycling offers benefits to the automotive industry, particularly in managing end-of-life vehicle components. Recycling Processes Petrochemicals

Many vehicle parts are made from materials that are challenging to recycle through traditional methods. These materials include valuable metals, rubber, and interior design materials like plastics, foam, carpeting, and upholstery. They can be broken down through chemical recycling into their original chemical constituents, which can be used to create new automotive materials.

Many mobility industry players have been embracing chemical recycling to reduce plastic waste. In 2022, Audi partnered with LyondellBasell, a chemical company, to use its plastics in the Audi Q8 e-tron’s seatbelt buckle covers. The plastic is made from feedstocks sourced from mixed automotive plastic waste. Meanwhile, Mercedes-Benz is working with BASF and startup Pyrum Innovations to increase the proportion of recycled materials in its car fleet to an average of 40% by 2030. Recycling Processes Petrochemicals

The carmaker utilizes BASF’s chemical recycling technology and combines it with pyrolysis oil that Pyrum Innovations generates from used tires.


6 Industries that Chemical Recycling is Poised to Disrupt

Is biodegradable packaging really the answer to the world’s plastic addiction?

Many materials can be used to create biodegradable packaging, including crop waste

The modern world’s addiction to plastic shows no sign of ending, with forecasts indicating that demand for the material is likely to rise steeply in the coming decades.

As a result, efforts to design and produce less harmful alternatives have ramped up. Cutlery, bottles and plates can now be made out of plant material, and some even degrade into fish food. But can they replace the need for traditional plastic?

Is biodegradable the answer?

Given the problems created by conventional plastics, mostly generated from fossil fuels, is the answer to be found in biodegradable alternatives? Recycling Processes Petrochemicals

There’s a perception if it says biodegradable it will rot down. That’s not the case at all

Phil Purnell, University of Leeds

Starch, cellulose (plant fibres), biologically derived polymers and proteins are the starting points for various biodegradable plastics, including packaging materials. Some biodegradable plastics are compostable, meaning that they turn into a nutrient-rich substance.

“There are many types of compostable plastics,” said Dr Teresa Domenech, associate professor in industrial ecology and the circular economy at University College London.

“The most common ones are polylactic acid derived. The feedstock is starchy products such as sugar cane, corn starch … but they can be derived from a variety of biomaterials, including agricultural waste.” Recycling Processes Petrochemicals

Researchers are investigating potential new materials, as evidenced by a study published in June by scientists at the Dubai campus of the Indian university Bits Pilani.

The scientists found that a composite of starch, cellulose, chitin (which can be obtained from fungi, for example) and date seed extracts could be useful as a food packaging film.

Starch is widely available from plants including wheat, corn and potatoes but, on its own, tends not to prevent the growth of microorganisms that cause food to spoil.

With the date seeds extract included, the film was better able to protect the fruit from deteriorating. Recycling Processes Petrochemicals

“Addition of extracts from dat e seeds to the prepared composite film imparted antioxidant and antimicrobial properties, which when used for fruit wrapping suggested that the freshness of the fruit was retained for a much longer period,” the researchers wrote in Food Bioscience.

When conditions are optimal, the film degraded in composting soil in five to seven weeks.

In another example, scientists in China recently found that a mix of cellulose nanofibres and part of the sweetcorn stalk called the corn straw core was a potential food packaging material because it resisted ultraviolet light and was not water vapour permeable.

The researchers’ paper in the journal Food Hydrocolloids described corn straw cores as “by far the most readily available” type of crop waste. Recycling Processes Petrochemicals

Breaking down the truth

While such results may appear to suggest that biodegradable packaging could be the answer to society’s plastic problem, “there are all sorts of caveats”, according to Prof Phil Purnell, a professor of materials and structures at the University of Leeds in the UK.


Credit : Source: Our World In Data

The Journey of Recycled Plastics: From Waste to New Products

Plastic waste has become one of the most significant environmental challenges that the world faces today. It is a pervasive pollutant that not only affects land but also water bodies and the creatures that call them home. The accumulation of plastic waste can be attributed to the surge in plastic production, inadequate disposal facilities, and consumer indifference. However, there is a solution to this problem, and that is plastic recycling. In this blog post, we will delve into how plastic recycling can transform waste into a sustainable future. Recycling Processes Petrochemicals

  1. Understanding Plastic Recycling: Plastic recycling involves the collection, sorting, cleaning, and processing of plastic waste to create new products. It can be achieved through various methods, such as mechanical recycling, chemical recycling, and energy recovery. Mechanical recycling, the most common form, melts down the waste and remolds it into new products.
  2. The Advantages of Plastic Recycling: Recycling plastic waste has numerous benefits. It reduces the volume of waste in landfills, conserves natural resources, saves energy, and decreases greenhouse gas emissions. Recycling one ton of plastic can save approximately six barrels of oil, 3.3 cubic yards of landfill space, and 30,000 pounds of greenhouse gas emissions. Moreover, recycled plastic products are cheaper than those made from virgin plastic, making them more accessible to consumers. Recycling Processes Petrochemicals
  3. The Challenges of Plastic Recycling: Despite being an excellent solution for reducing plastic waste, several challenges hinder the full implementation of plastic recycling. One major challenge is the lack of infrastructure and facilities for recycling in many countries, leading to the accumulation of plastic waste. Additionally, the recycling process can be costly, especially for low-value plastics. Furthermore, efficiently sorting and separating different types of plastics, which require different recycling methods, can be difficult.
  4. The Role of Consumers in Plastic Recycling: Consumers play a crucial role in plastic recycling by reducing their plastic waste and properly disposing of plastic products. Recycling Processes Petrochemicals
  5. This can be achieved by adopting practices such as using reusable bags, bottles, and containers, avoiding single-use plastics, and depositing plastic waste in recycling bins. By doing so, consumers can help reduce the volume of plastic waste ending up in landfills and water bodies.
  6. The Future of Plastic Recycling: The future of plastic recycling appears promising, as advancements in technology lead to new and innovative methods of recycling plastics. Chemical recycling, for instance, is gaining traction as it can transform hard-to-recycle plastics into raw materials for new plastic products. Moreover, governments and organizations are investing in recycling facilities and waste management systems to support plastic recycling efforts.

In Conclusion: Plastic recycling is a crucial step towards a sustainable future.

By recycling plastic waste, we can reduce our carbon footprint, conserve natural resources, and protect the environment. Recycling Processes Petrochemicals

Although challenges remain, the benefits of plastic recycling outweigh the costs. As responsible consumers and businesses, we must embrace eco-friendly practices such as reducing plastic waste, proper disposal, and supporting initiatives that improve recycling infrastructure. Together, we can turn waste into a sustainable future.

The Journey of Recycled Plastics: From Waste to New Products

African Exports to China Witness Significant Decline Amidst Economic Slowdown and Property Market Slump

In the first half of 2023, African exports to China experienced a sharp decline, plummeting by 12.4 per cent, despite Beijing’s efforts to boost trade with the continent. China’s General Administration of Customs reported that the total value of shipments from Africa to China stood at US$53 billion during this period. This news comes as a setback for China’s ambitious plan to strengthen its trade ties with African nations.

Contrastingly, Chinese exports to Africa displayed robust growth, rising by 15.4 per cent to reach US$87.88 billion during the same six-month period. Recycling Processes Petrochemicals

The surge in Chinese exports was driven by a surge in demand for goods from China, following the easing of Covid-19 restrictions after three years of the pandemic’s impact. Consequently, the total two-way trade between China and Africa saw a modest increase of 3.1 per cent, amounting to US$140.9 billion.

Analysts and observers point to several factors that have contributed to this divergence in trade performance. One significant factor has been China’s economic slowdown, which has affected its overall import capacity. The sluggishness in China’s economy was further compounded by a slump in the country’s property market, along with lower commodity prices, particularly international crude oil. Recycling Processes Petrochemicals

Resource-rich nations in Africa, such as Angola, the Democratic Republic of the Congo (DRC), the Republic of the Congo, Zambia, Nigeria, and Ghana, heavily reliant on exporting industrial raw materials and crude oil, have experienced a notable drop in their trade with China. Angola, for instance, the second-largest oil producer in Africa, saw its trade with China decrease by 29.8 per cent to US$10.24 billion in the first half of the year. Shipments to China from Angola plummeted by 39.3 per cent, amounting to US$7.94 billion during the same period.

It is important to note that China had previously engaged in agreements with multiple African countries, offering tariff-free access to the Chinese market, and promising to import more goods from the continent. In 2021, Chinese President Xi Jinping had announced Beijing’s ambition to import African products worth US$300 billion by 2025, with a specific focus on non-resource exports. However, despite these efforts, the trade balance remains skewed in favor of China, raising concerns about the effectiveness of these initiatives. Recycling Processes Petrochemicals

Industry experts have attributed Africa’s declining exports to China to the impacts of China’s weakening property sector. The construction and infrastructure boom in China, which were heavily reliant on African raw materials like iron ore and fuel, has slowed down significantly. Chinese property investment declined by 7.9 per cent during the first six months of 2023 compared to the previous year, according to official Chinese data.

While African nations have made strides to diversify their trade ties, relying on other markets to reduce their dependence on China, the overall economic slowdown and property market slump in China continue to have far-reaching consequences. Nonetheless, some countries in Africa have fared better than others due to their diversified trade relationships and robust exports of metals to China. Recycling Processes Petrochemicals

In conclusion, despite China’s efforts to bolster trade with Africa, the first half of 2023 has seen a substantial decline in African exports to China. The ongoing economic slowdown and property market challenges in China, combined with lower commodity prices, have contributed to this decline. As Africa seeks to navigate these challenging times and diversify its trade partners, the sustainability of China’s push to promote imports from Africa remains uncertain. Both China and African nations may need to explore new strategies and avenues to foster mutually beneficial trade relationships moving forward.

African Exports to China Witness Significant Decline Amidst Economic Slowdown and Property Market Slump

Automotive industry PA-Recycling – Every day a new idea for EV-cars 22-07-2023

Recycling Processes Petrochemicals

Wordpress Social Share Plugin powered by Ultimatelysocial